pytorch CNN完成minst分类 (GPU版本)

需要pytorch1.4.0 注意代码是GPU版本
最近刚去实习,需要完成CNN对经典minst数据集进行分类,作为熟悉torch的上手工作,记录如下:
ps:下载不了数据集的可以通过百度网盘下载,在data的文件夹下面
完整项目(包含数据集)
https://pan.baidu.com/s/1hyq-AYnlIyq3x7GCxLI33Q
密码:qfsa
pytorch CNN完成minst分类 (GPU版本)_第1张图片
完整代码如下:

#!/usr/bin/env python
#-*- coding:utf-8 -*-
# datetime:2020-03-06 14:30
# software: PyCharm
import torch
import torch.nn as nn
from torch.autograd import  Variable
from torchvision import datasets,transforms
from torch.utils.data import DataLoader
import numpy as np
import matplotlib.pyplot as plt
transform = transforms.Compose([transforms.ToTensor(),transforms.Lambda(lambda x:x.repeat(3,1,1)),transforms.Normalize(mean=[0.5,0.5,0.5],std=[0.5,0.5,0.5])])
data_train = datasets.MNIST(root = './data',transform=transform,train = True,download = True)
data_test = datasets.MNIST(root = './data',transform=transform,train = False)

data_loader_train = DataLoader(dataset=data_train,batch_size=64,shuffle=True)
data_loader_test = DataLoader(dataset=data_test,batch_size=64,shuffle=False)


class CNN(nn.Module):
    def __init__(self):
        super(CNN,self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels = 3,out_channels = 64,kernel_size = 3,stride = 1,padding = 1),
            nn.ReLU(),
            nn.Conv2d(in_channels = 64,out_channels = 128,kernel_size = 3,stride = 1,padding = 1),
            nn.ReLU(),
            nn.MaxPool2d(stride = 2,kernel_size = 2)
        )
        self.dense = nn.Sequential(
            nn.Linear(14*14*128,1024),
            nn.ReLU(),
            nn.Dropout(p=0.5),
        )
        self.out = nn.Linear(1024,10)

    def forward(self, x):
        x = self.conv1(x)
        x = x.view(-1,14*14*128) #对参数进行扁平化
        x = self.dense(x)
        x = self.out(x)
        return x
model = CNN()
if torch.cuda.is_available():
    print("gpu start")
    model.cuda()
#损失函数,交叉熵作为损失函数
cost = nn.CrossEntropyLoss()
#优化器
optimzer = torch.optim.Adam(model.parameters())
#print(model) 打印看看模型

#训练模型
n_epochs = 5

for epoch in range(n_epochs) :
    running_loss = 0.0
    running_correct = 0
    print("Epoch{}/{}".format(epoch, n_epochs))
    print("-" * 10)
    for data in data_loader_train :
        # print("train ing")
        X_train, y_train = data
        # 有GPU加下面这行,没有不用加
        X_train, y_train = X_train.cuda(), y_train.cuda()
        X_train, y_train = Variable(X_train), Variable(y_train)
        outputs = model(X_train)
        _, pred = torch.max(outputs.data, 1)
        optimzer.zero_grad()
        loss = cost(outputs, y_train)

        loss.backward()
        optimzer.step()
        running_loss += loss.item()
        running_correct += torch.sum(pred == y_train.data)
    testing_correct = 0
    for data in data_loader_test :
        X_test, y_test = data
        # 有GPU加下面这行,没有不用加
        X_test, y_test = X_test.cuda(), y_test.cuda()
        X_test, y_test = Variable(X_test), Variable(y_test)
        outputs = model(X_test)
        _, pred = torch.max(outputs, 1)
        testing_correct += torch.sum(pred == y_test.data)
    print("Loss is :{:.4f},Train Accuracy is:{:.4f}%,Test Accuracy is:{:.4f}".format(running_loss / len(data_train),
                                                                                     100 * running_correct / len(
                                                                                         data_train),
                                                                                     100 * testing_correct / len(
                                                                                         data_test)))

运行结果:
pytorch CNN完成minst分类 (GPU版本)_第2张图片
训练速度很快,大概2分钟就跑出结果了

你可能感兴趣的:(深度学习,深度学习,gpu,神经网络)