- 【Block总结】CDFA,对比驱动特征聚合模块|即插即用,极大增强特征表达!
AI浩
Block总结计算机视觉深度学习目标检测
论文信息标题:ConDSeg:AGeneralMedicalImageSegmentationFrameworkviaContrast-DrivenFeatureEnhancement作者:MengqiLei,HaochenWu,XinhuaLv,XinWang机构:中国地质大学(武汉),百度公司发表时间:2024年12月11日会议:AAAI2025论文:https://arxiv.org/pdf
- drogon orm分页问题,req->getJsonObject()为空会导致Segmentation fault
zh7314
2024年6月22日17:14:12req->getJsonObject()获取json数据的时候,如果没有提前判断if(req->getJsonObject()==nullptr){throwstd::invalid_argument("参数json不能为空");}autojsonPtr=req->getJsonObject();官方文档:https://github.com/drogonfra
- 3DUnetCNN 项目常见问题解决方案
魏纯漫
3DUnetCNN项目常见问题解决方案3DUnetCNNPytorch3DU-NetConvolutionNeuralNetwork(CNN)designedformedicalimagesegmentation项目地址:https://gitcode.com/gh_mirrors/3d/3DUnetCNN项目基础介绍3DUnetCNN是一个基于PyTorch的3DU-Net卷积神经网络(CNN)
- 3D U-Net CNN医学图像分割项目教程
尤辰城Agatha
3DU-NetCNN医学图像分割项目教程3DUnetCNNPytorch3DU-NetConvolutionNeuralNetwork(CNN)designedformedicalimagesegmentation项目地址:https://gitcode.com/gh_mirrors/3d/3DUnetCNN1.项目介绍3DU-NetCNN是由Ellisdg开发的Python实现,专门用于医学图像
- 【PCL】Segmentation 模块—— 圆柱模型分割(Cylinder model segmentation)
old_power
PCL计算机视觉3Dc++
1、简介PCL(PointCloudLibrary)中的圆柱模型分割CylinderModelSegmentation是一种从点云数据中提取圆柱体模型的技术。它通过识别点云中符合圆柱体几何形状的部分,将圆柱体从其他几何形状中分离出来。1.1主要步骤预处理:对点云进行去噪、下采样等操作,以减少数据量并提升处理效率。法线估计:计算点云中每个点的法线,用于后续的模型拟合。模型拟合:使用RANSAC(随机
- RTDETR融合[WACV 2024]的MetaSeg中的gmb模块
今天炼丹了吗
RT-DETR涨点改进专栏RT-DETR
RT-DETR使用教程:RT-DETR使用教程RT-DETR改进汇总贴:RT-DETR更新汇总贴《MetaSeg:MetaFormer-basedGlobalContexts-awareNetworkforEfficientSemanticSegmentation》一、模块介绍论文链接:https://arxiv.org/abs/2408.07576代码链接:https://github.com/
- AI推介-多模态视觉语言模型VLMs论文速览(arXiv方向):2024.07.25-2024.08.01
小小帅AIGC
VLM论文时报人工智能语言模型自然语言处理VLM大语言模型计算机视觉视觉语言模型
文章目录~1.PayingMoreAttentiontoImage:ATraining-FreeMethodforAlleviatingHallucinationinLVLMs2.MTA-CLIP:Language-GuidedSemanticSegmentationwithMask-TextAlignment3.MarvelOVD:MarryingObjectRecognitionandVisi
- 使用3DUNet训练自己的数据集(pytorch)— 医疗影像分割
编程日记✧
智能医疗pytorch人工智能python计算机视觉图像处理深度学习健康医疗
代码:lee-zq/3DUNet-Pytorch:3DUNetimplementedwithpytorch(github.com)文章<cicek16miccai.pdf(uni-freiburg.de)3DU-Net:LearningDenseVolumetricSegmentation
- 目标检测:Cascade R-CNN: Delving into High Quality Object Detection - 2017【方法解读】
智维探境
AI与SLAM论文解析目标检测cnnCascadeR-CNN
查看新版本论文:目标检测:CascadeR-CNN:HighQualityObjectDetectionandInstanceSegmentation-2019【方法解读】目录摘要:1.引言2.相关工作3.对象检测3.1.边界框回归3.2.分类3.3.检测质量4.级联R-CNN4.1.级联边界框回归4.2.级联检测摘要:在目标检测中,需要一个交并比(IoU)阈值来定义正样本和负样本。使用低IoU阈
- 内存分页、内存分段的区别
秋夫人
java前端数据库操作系统
内存分页(Paging)和内存分段(Segmentation)是操作系统用于内存管理的两种技术。它们都旨在提高内存的使用效率,但实现方式和目的有所不同。内存分页(Paging)基本概念:内存分页是将物理内存划分为固定大小的块,称为“页”(Page),相应地,逻辑内存(即进程空间)也被划分为同样大小的“页”。操作系统维护一个页表来记录虚拟页和物理页帧之间的映射关系。目的:分页的主要目的是实现虚拟内存
- 2020-04-04
奋斗中的小强
SAN:Scale-AwareNetworkforSemanticSegmentationofHigh-ResolutionAerialImages高分辨率航空图像具有广泛的应用,如军事探索和城市规划。语义分割是高分辨率航空图像分析中广泛使用的一种基本方法。然而,高分辨率航空影像地物具有尺度不一致的特征,这一特征往往会导致预测结果的不确定性。为了解决这个问题,我们提出了一个新的尺度感知模块(SAM
- VisionLLaMA: A Unified LLaMA Interface for Vision Tasks
liferecords
LLMllama深度学习人工智能机器学习自然语言处理算法
VisionLLaMA:AUnifiedLLaMAInterfaceforVisionTasks相关链接:arxivgithub关键字:VisionLLaMA、visiontransformers、imagegeneration、imageclassification、semanticsegmentation摘要大型语言模型(LLMs)通常基于Transformer架构来处理文本输入。例如,LLa
- 【北邮鲁鹏老师计算机视觉课程笔记】09 Segmentation 分割
量子-Alex
CV知识学习和论文阅读计算机视觉笔记人工智能
【北邮鲁鹏老师计算机视觉课程笔记】09Segmentation分割1过分割与欠分割找一个合适的分割方法过分割:分割得太细自底向上的方法无监督的自底向上:基于像素的自顶向下:从语义的角度2人是如何感知世界的人会感觉下面的线比上面的线长人的感知:先感知部件,然后理解组合后的整体语义3分割思路临近的、颜色相似的、形状相似的、同向的、平行的、对称的、连续的、封闭的电梯上的楼层按键4把分割建模成聚类任务将像
- 云服务器frp实现http内网穿透 ssh内网穿透
Javin_Ai
系统环境搭建Linux服务器httpssh
文章目录0.下载及其相关注意事项1.frphttp和ssh穿透流程图解前言:本教程将教会您如何暴露内网的http服务到公网访问如何在远程公网ssh连接到自己家里的内网机器0.下载及其相关注意事项云服务器上使用的是frp的服务端。在安装之前首先要明确当前使用的服务器的系统信息,否则使用了不匹配的frp版本,会出现:Segmentationfault的错误。可以通过arch命令查看系统信息。archa
- MMsegmentation-随机初始化
SatVision炼金士
mmalb-炼金术python
系列文章目录文章目录系列文章目录前言一、初始化单个模块二、初始化多个模块总结前言mmlab下游分支调用权重随机初始化使用参考mmengine的说明文档mmengine支持模型初始化方法包括:BaseInit,Caffe2XavierInit,ConstantInit,KaimingInit,NormalInit,PretrainedInit,TruncNormalInit,UniformInit,
- 模型 STP(市场细分、目标市场选择、品牌定位)
图王大胜
思维模型人工智能市场分析定位战略规划企业发展
系列文章主要是分享思维模型,涉及各个领域,重在提升认知。细分找目标,定位定策略。1模型STP(市场细分、目标市场选择、品牌定位)的应用1.1某化妆品公司使用STP模型制定其市场营销策略市场细分(Segmentation):该公司通过市场调研,将消费者市场根据年龄、性别、收入、皮肤类型和消费偏好等因素进行细分。目标市场选择(Targeting):基于市场细分的结果,公司选择了年轻女性作为其主要的目标
- MIA | Multi-modal contrastive mutual learning and pseudo-label re-learning for semi-supervised medic
CodeCognizer(代码认知者)
医学图像分割人工智能
MIA|Multi-modalcontrastivemutuallearningandpseudo-labelre-learningforsemi-supervisedmedicalimagesegmentation论文标题:Multi-modalcontrastivemutuallearningandpseudo-labelre-learningforsemi-supervisedmedical
- 半监督语义分割论文学习记录
西瓜真的很皮啊
半监督语义分割深度学习机器学习人工智能
Semi-SupervisedSemanticSegmentationwithCross-ConsistencyTraining1.1motivation一致性训练的目的是在应用于输入的小扰动上增强模型预测的不变性。因此,学习的模型将对这样的小变化具有鲁棒性。一致性训练的有效性在很大程度上取决于数据分布的行为,即集群假设,其中类必须由低密度区域分隔。在语义分割中,在输入中,我们没有观察到低密度区域
- 2023最新半监督语义分割综述 | 技术总结与展望!
自动驾驶之心
计算机视觉人工智能深度学习python机器学习
作者|派派星编辑|CVHub点击下方卡片,关注“自动驾驶之心”公众号ADAS巨卷干货,即可获取点击进入→自动驾驶之心【语义分割】技术交流群后台回复【分割综述】获取语义分割、实例分割、全景分割、弱监督分割等超全学习资料!Title:ASurveyonSemi-SupervisedSemanticSegmentationPaper:https://arxiv.org/pdf/2302.09899.pd
- 第二天 寻找了三篇深度学习综述(深度学习,目标检测,图像分割)
kim_ed33
##################ImageSegmentationUsingDeepLearning:ASurvey本文梳理了172篇相关文献。本文全面回顾了撰写本文时候的文献。包括但不限于全卷积像素标记网络(FCN),编码器-解码器体系结构,多尺度以及基于金字塔的方法,递归网络,视觉注意模型和对抗环境中的生成模型;从最早的方法(阈值化,K均值聚类,分水岭)到后来(随机场,细数方法一类的)再到
- CVPR 2023: Style Projected Clustering for Domain Generalized Semantic Segmentation
结构化文摘
人工智能
我们使用以下6个分类标准对本文的研究选题进行分析:1.泛化方法:这一标准区分了不同方法对解决泛化到未见过数据的挑战的处理方式。基于正则化的方法:这些方法尝试将所有图像强制到一个类似的特征空间中,通常通过最小化域特定变化等技术来实现。虽然这促进了对具有相似特征的未见过域的泛化,但它可能会限制有效表示不同风格和特征的能力。示例包括使用域对抗训练或不变特征学习的方法。基于差异的方法:这些方法不是强制同质
- kaggle实战语义分割-Car segmentation(附源码)
橘柚jvyou
python人工智能计算机视觉深度学习pytorch
目录前言项目介绍数据集处理数据集加载定义网络训练网络验证网络前言本篇文章会讲解使用pytorch完成另外一个计算机视觉的基本任务-语义分割。语义分割是将图片中每个部分根据其语义分割出来,其相比于图像分类的不同点是,图像分类是对一张图片进行分类,而语义分割是对图像中的每个像素点进行分类。我们这里使用的语义分割数据集是kaggle上的一个数据集。数据集来源:https://www.kaggle.com
- 一个奇怪的bug
chenxiaochou
bug
class类没有写默认的构造函数debug下没问题release下直接Segmentationfault(coredumped)
- 【大厂AI课学习笔记】【1.5 AI技术领域】(7)图像分割
giszz
学习笔记人工智能学习笔记
今天学习到了图像分割。这是我学习笔记的脑图。图像分割,ImageSegmentation,就是将数字图像分割为若干个图像子区域(像素的集合,也被称为超像素),改变图像的表达方式,以更容易理解和分析。图像分割,十分重要,也十分困难,是计算机视觉中的关键步骤。图像分割分为三类:语义分割。预测出输入熟悉的每个像素点属于哪一类的标签实例分割。在语义分割的基础上,还要区分出同一类的不同个体全景分割。在实例分
- 实例分割论文阅读之:FCN:《Fully Convolutional Networks for Semantica Segmentation》
交换喜悲
mdetection系列论文阅读目标检测人工智能实例分割计算机视觉卷积神经网络
论文地址:https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf代码链接:https://github.com/pytorch/vision摘要卷积网络是强大的视觉模型,可以产生特征层次结构。我们证明,经过端到端、像素到像素训练的卷积网络
- C语言特殊指针
lcannal
C语言基础jvm数据结构
1野指针概念:指向一块未知区域的指针,被称为野指针。野指针是危险的。危害:引用野指针,相当于访问了非法的内存,常常会导致段错误(segmentationfault)引用野指针,可能会破坏系统的关键数据,导致系统崩溃等严重后果产生原因:指针定义之后,未初始化指针所指向的内存,被系统回收指针越界如何防止:指针定义时,及时初始化绝不引用已被系统回收的内存确认所申请的内存边界,谨防越界2空指针很多情况下,
- 实例分割论文阅读之:《Mask Transfiner for High-Quality Instance Segmentation》
交换喜悲
mdetection系列论文阅读目标检测人工智能深度学习transformer
1.摘要两阶段和基于查询的实例分割方法取得了显著的效果。然而,它们的分段掩模仍然非常粗糙。在本文中,我们提出了一种高质量和高效的实例分割MaskTransfiner。我们的MaskTransfiner不是在规则的密集张量上操作,而是将图像区域分解并表示为四叉树。我们基于变压器的方法只处理检测到的容易出错的树节点,并并行地自我纠正它们的错误。虽然这些稀疏像素只占总数的一小部分,但它们对最终的掩模质量
- 烹饪第一个U-Net进行图像分割
小北的北
python开发语言
今天我们将学习如何准备计算机视觉中最重要的网络之一:U-Net。如果你没有代码和数据集也没关系,可以分别通过下面两个链接进行访问:代码:https://www.kaggle.com/datasets/mateuszbuda/lgg-mri-segmentation?source=post_page-----e812e37e9cd0--------------------------------Ka
- 51-10 多模态论文串讲—ALBEF 论文精读
深圳季连AIgraphX
AutoGPT自动驾驶大模型自动驾驶智慧城市transformergpt-3迁移学习
今天我们就来过一下多模态的串讲,其实之前,我们也讲了很多工作了,比如说CLIP,还有ViLT,以及CLIP的那么多后续工作。多模态学习在最近几年真的是异常的火爆,那除了普通的这种多模态学习,比如说视觉问答,图文检索这些,那其实之前讲的,所有这种languageguideddetection,或者这些languageguidedsegmentation任务都是多态。而且包括最近大的这种文本图像生成,
- 语义分割系列之FCN、DeeplabV1、V2、V3、V3Plus论文学习
Diros1g
学习深度学习计算机视觉
FCNFullyConvolutionalNetworks论文:FullyConvolutionalNetworksforSemanticSegmentation地址:https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf特点:用全卷积替
- 矩阵求逆(JAVA)初等行变换
qiuwanchi
矩阵求逆(JAVA)
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(初等行变换)
* @author 邱万迟
*
- JDK timer
antlove
javajdkschedulecodetimer
1.java.util.Timer.schedule(TimerTask task, long delay):多长时间(毫秒)后执行任务
2.java.util.Timer.schedule(TimerTask task, Date time):设定某个时间执行任务
3.java.util.Timer.schedule(TimerTask task, long delay,longperiod
- JVM调优总结 -Xms -Xmx -Xmn -Xss
coder_xpf
jvm应用服务器
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx
- JDBC连接数据库
Array_06
jdbc
package Util;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBCUtil {
//完
- Unsupported major.minor version 51.0(jdk版本错误)
oloz
java
java.lang.UnsupportedClassVersionError: cn/support/cache/CacheType : Unsupported major.minor version 51.0 (unable to load class cn.support.cache.CacheType)
at org.apache.catalina.loader.WebappClassL
- 用多个线程处理1个List集合
362217990
多线程threadlist集合
昨天发了一个提问,启动5个线程将一个List中的内容,然后将5个线程的内容拼接起来,由于时间比较急迫,自己就写了一个Demo,希望对菜鸟有参考意义。。
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
public c
- JSP简单访问数据库
香水浓
sqlmysqljsp
学习使用javaBean,代码很烂,仅为留个脚印
public class DBHelper {
private String driverName;
private String url;
private String user;
private String password;
private Connection connection;
privat
- Flex4中使用组件添加柱状图、饼状图等图表
AdyZhang
Flex
1.添加一个最简单的柱状图
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<?xml version=
"1.0"&n
- Android 5.0 - ProgressBar 进度条无法展示到按钮的前面
aijuans
android
在低于SDK < 21 的版本中,ProgressBar 可以展示到按钮前面,并且为之在按钮的中间,但是切换到android 5.0后进度条ProgressBar 展示顺序变化了,按钮再前面,ProgressBar 在后面了我的xml配置文件如下:
[html]
view plain
copy
<RelativeLa
- 查询汇总的sql
baalwolf
sql
select list.listname, list.createtime,listcount from dream_list as list , (select listid,count(listid) as listcount from dream_list_user group by listid order by count(
- Linux du命令和df命令区别
BigBird2012
linux
1,两者区别
du,disk usage,是通过搜索文件来计算每个文件的大小然后累加,du能看到的文件只是一些当前存在的,没有被删除的。他计算的大小就是当前他认为存在的所有文件大小的累加和。
- AngularJS中的$apply,用还是不用?
bijian1013
JavaScriptAngularJS$apply
在AngularJS开发中,何时应该调用$scope.$apply(),何时不应该调用。下面我们透彻地解释这个问题。
但是首先,让我们把$apply转换成一种简化的形式。
scope.$apply就像一个懒惰的工人。它需要按照命
- [Zookeeper学习笔记十]Zookeeper源代码分析之ClientCnxn数据序列化和反序列化
bit1129
zookeeper
ClientCnxn是Zookeeper客户端和Zookeeper服务器端进行通信和事件通知处理的主要类,它内部包含两个类,1. SendThread 2. EventThread, SendThread负责客户端和服务器端的数据通信,也包括事件信息的传输,EventThread主要在客户端回调注册的Watchers进行通知处理
ClientCnxn构造方法
&
- 【Java命令一】jmap
bit1129
Java命令
jmap命令的用法:
[hadoop@hadoop sbin]$ jmap
Usage:
jmap [option] <pid>
(to connect to running process)
jmap [option] <executable <core>
(to connect to a
- Apache 服务器安全防护及实战
ronin47
此文转自IBM.
Apache 服务简介
Web 服务器也称为 WWW 服务器或 HTTP 服务器 (HTTP Server),它是 Internet 上最常见也是使用最频繁的服务器之一,Web 服务器能够为用户提供网页浏览、论坛访问等等服务。
由于用户在通过 Web 浏览器访问信息资源的过程中,无须再关心一些技术性的细节,而且界面非常友好,因而 Web 在 Internet 上一推出就得到
- unity 3d实例化位置出现布置?
brotherlamp
unity教程unityunity资料unity视频unity自学
问:unity 3d实例化位置出现布置?
答:实例化的同时就可以指定被实例化的物体的位置,即 position
Instantiate (original : Object, position : Vector3, rotation : Quaternion) : Object
这样你不需要再用Transform.Position了,
如果你省略了第二个参数(
- 《重构,改善现有代码的设计》第八章 Duplicate Observed Data
bylijinnan
java重构
import java.awt.Color;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.Label;
import java.awt.TextField;
import java.awt.event.FocusAdapter;
import java.awt.event.FocusE
- struts2更改struts.xml配置目录
chiangfai
struts.xml
struts2默认是读取classes目录下的配置文件,要更改配置文件目录,比如放在WEB-INF下,路径应该写成../struts.xml(非/WEB-INF/struts.xml)
web.xml文件修改如下:
<filter>
<filter-name>struts2</filter-name>
<filter-class&g
- redis做缓存时的一点优化
chenchao051
redishadooppipeline
最近集群上有个job,其中需要短时间内频繁访问缓存,大概7亿多次。我这边的缓存是使用redis来做的,问题就来了。
首先,redis中存的是普通kv,没有考虑使用hash等解结构,那么以为着这个job需要访问7亿多次redis,导致效率低,且出现很多redi
- mysql导出数据不输出标题行
daizj
mysql数据导出去掉第一行去掉标题
当想使用数据库中的某些数据,想将其导入到文件中,而想去掉第一行的标题是可以加上-N参数
如通过下面命令导出数据:
mysql -uuserName -ppasswd -hhost -Pport -Ddatabase -e " select * from tableName" > exportResult.txt
结果为:
studentid
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
先下载PHPEXCEL类文件,放在class目录下面,然后新建一个index.php文件,内容如下
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('
- 爱情格言
dcj3sjt126com
格言
1) I love you not because of who you are, but because of who I am when I am with you. 我爱你,不是因为你是一个怎样的人,而是因为我喜欢与你在一起时的感觉。 2) No man or woman is worth your tears, and the one who is, won‘t
- 转 Activity 详解——Activity文档翻译
e200702084
androidUIsqlite配置管理网络应用
activity 展现在用户面前的经常是全屏窗口,你也可以将 activity 作为浮动窗口来使用(使用设置了 windowIsFloating 的主题),或者嵌入到其他的 activity (使用 ActivityGroup )中。 当用户离开 activity 时你可以在 onPause() 进行相应的操作 。更重要的是,用户做的任何改变都应该在该点上提交 ( 经常提交到 ContentPro
- win7安装MongoDB服务
geeksun
mongodb
1. 下载MongoDB的windows版本:mongodb-win32-x86_64-2008plus-ssl-3.0.4.zip,Linux版本也在这里下载,下载地址: http://www.mongodb.org/downloads
2. 解压MongoDB在D:\server\mongodb, 在D:\server\mongodb下创建d
- Javascript魔法方法:__defineGetter__,__defineSetter__
hongtoushizi
js
转载自: http://www.blackglory.me/javascript-magic-method-definegetter-definesetter/
在javascript的类中,可以用defineGetter和defineSetter_控制成员变量的Get和Set行为
例如,在一个图书类中,我们自动为Book加上书名符号:
function Book(name){
- 错误的日期格式可能导致走nginx proxy cache时不能进行304响应
jinnianshilongnian
cache
昨天在整合某些系统的nginx配置时,出现了当使用nginx cache时无法返回304响应的情况,出问题的响应头: Content-Type:text/html; charset=gb2312 Date:Mon, 05 Jan 2015 01:58:05 GMT Expires:Mon , 05 Jan 15 02:03:00 GMT Last-Modified:Mon, 05
- 数据源架构模式之行数据入口
home198979
PHP架构行数据入口
注:看不懂的请勿踩,此文章非针对java,java爱好者可直接略过。
一、概念
行数据入口(Row Data Gateway):充当数据源中单条记录入口的对象,每行一个实例。
二、简单实现行数据入口
为了方便理解,还是先简单实现:
<?php
/**
* 行数据入口类
*/
class OrderGateway {
/*定义元数
- Linux各个目录的作用及内容
pda158
linux脚本
1)根目录“/” 根目录位于目录结构的最顶层,用斜线(/)表示,类似于
Windows
操作系统的“C:\“,包含Fedora操作系统中所有的目录和文件。 2)/bin /bin 目录又称为二进制目录,包含了那些供系统管理员和普通用户使用的重要
linux命令的二进制映像。该目录存放的内容包括各种可执行文件,还有某些可执行文件的符号连接。常用的命令有:cp、d
- ubuntu12.04上编译openjdk7
ol_beta
HotSpotjvmjdkOpenJDK
获取源码
从openjdk代码仓库获取(比较慢)
安装mercurial Mercurial是一个版本管理工具。 sudo apt-get install mercurial
将以下内容添加到$HOME/.hgrc文件中,如果没有则自己创建一个: [extensions] forest=/home/lichengwu/hgforest-crew/forest.py fe
- 将数据库字段转换成设计文档所需的字段
vipbooks
设计模式工作正则表达式
哈哈,出差这么久终于回来了,回家的感觉真好!
PowerDesigner的物理数据库一出来,设计文档中要改的字段就多得不计其数,如果要把PowerDesigner中的字段一个个Copy到设计文档中,那将会是一件非常痛苦的事情。