- 个人学习笔记7-6:动手学深度学习pytorch版-李沐
浪子L
深度学习深度学习笔记计算机视觉python人工智能神经网络pytorch
#人工智能##深度学习##语义分割##计算机视觉##神经网络#计算机视觉13.11全卷积网络全卷积网络(fullyconvolutionalnetwork,FCN)采用卷积神经网络实现了从图像像素到像素类别的变换。引入l转置卷积(transposedconvolution)实现的,输出的类别预测与输入图像在像素级别上具有一一对应关系:通道维的输出即该位置对应像素的类别预测。13.11.1构造模型下
- 动手学深度学习(pytorch土堆)-03常见的Transforms
#include<菜鸡>
深度学习深度学习pytorch人工智能
Composetransforms.Compose是PyTorch中的一个函数,用于将多个图像变换操作组合在一起,形成一个变换流水线。这样可以将一系列的图像处理操作整合为一个步骤,便于对图像进行批量预处理或增强。基本用法transforms.Compose接受一个列表,列表中的每个元素是一个变换操作。这些操作会按照给定的顺序依次作用在输入的图像上。Example:>>>transforms.Com
- 动手学深度学习(pytorch土堆)-02TensorBoard的使用
#include<菜鸡>
深度学习深度学习pytorch人工智能
1.可视化代码使用了torch.utils.tensorboard将数据记录到TensorBoard以便可视化。具体来说,它将标量数据记录到目录logs中,使用的是SummaryWriter类。代码分解如下:SummaryWriter("logs"):初始化一个TensorBoard的写入器,日志会保存到"logs"目录。writer.add_scalar("y=x",i,i):在循环的每一次迭代
- 动手学深度学习(pytorch)学习记录20-自定义层[学习记录]
walfar
pytorch深度学习pytorch学习
在深度学习中,自定义层是指开发者根据特定需求编写的神经网络层,而不是使用深度学习框架(如PyTorch、TensorFlow等)提供的现成层。自定义层可以让模型更加灵活,以适应特定的任务或数据集。目录没有参数的自定义层带参数的层没有参数的自定义层下面的CenteredLayer类要从其输入中减去均值。要构建它,只需继承基础层类并实现前向传播功能。importtorchimporttorch.nn.
- 动手学深度学习(pytorch)学习记录21-读写文件(模型与参数)[学习记录]
walfar
pytorch深度学习pytorch学习
目录加载和保存张量加载和保存模型参数保存模型的好处众多,涵盖了从开发到部署的整个机器学习生命周期。节省资源:训练模型可能需要大量的时间和计算资源。保存模型可以避免重复训练,从而节省时间和计算资源。快速部署:一旦模型被训练并保存,它可以迅速部署到生产环境中,加速产品上市时间。版本控制:保存不同版本的模型有助于跟踪模型的迭代过程,便于比较和回滚到之前的版本。离线使用:保存的模型可以在没有网络连接的情况
- 深度学习多GPU训练原理
浦东新村轱天乐
深度学习深度学习人工智能
详细参考《动手学深度学习》P233,8.4节多GPU计算。数据并行的方法把一个batch的所有数据平均分配到每块GPU的显存里,把模型参数在每个GPU显存上拷贝一份。每个GPU根据自己所分到的数据,计算本地梯度所有GPU的本地梯度相加(这里的梯度只是模型参数的梯度,不包括中间变量的梯度),得到总的梯度。(注意,梯度不用求平均,因为更新模型参数的时候,会除以batch_size,在那里做了平均)把总
- 【深度学习笔记】1 数据操作
RIKI_1
深度学习深度学习笔记人工智能
注:本文为《动手学深度学习》开源内容,仅为个人学习记录,无抄袭搬运意图数据操作在深度学习中,我们通常会频繁地对数据进行操作。作为动手学深度学习的基础,本节将介绍如何对内存中的数据进行操作。在PyTorch中,torch.Tensor是存储和变换数据的主要工具。如果你之前用过NumPy,你会发现Tensor和NumPy的多维数组非常类似。然而,Tensor提供GPU计算和自动求梯度等更多功能,这些使
- 【深度学习模型】6_3 语言模型数据集
RIKI_1
深度学习深度学习语言模型人工智能
注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图6.3语言模型数据集(周杰伦专辑歌词)本节将介绍如何预处理一个语言模型数据集,并将其转换成字符级循环神经网络所需要的输入格式。为此,我们收集了周杰伦从第一张专辑《Jay》到第十张专辑《跨时代》中的歌词,并在后面几节里应用循环神经网络来训练一个语言模型。当模型训练好后,我们就可以用这个模型来创作歌词。6.3.1
- 【深度学习笔记】6_4 循环神经网络的从零开始实现
RIKI_1
深度学习深度学习笔记rnn
注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图6.4循环神经网络的从零开始实现在本节中,我们将从零开始实现一个基于字符级循环神经网络的语言模型,并在周杰伦专辑歌词数据集上训练一个模型来进行歌词创作。首先,我们读取周杰伦专辑歌词数据集:importtimeimportmathimportnumpyasnpimporttorchfromtorchimport
- 【深度学习笔记】6_10 双向循环神经网络bi-rnn
RIKI_1
深度学习深度学习笔记rnn
注:本文为《动手学深度学习》开源内容,部分标注了个人理解,仅为个人学习记录,无抄袭搬运意图6.10双向循环神经网络之前介绍的循环神经网络模型都是假设当前时间步是由前面的较早时间步的序列决定的,因此它们都将信息通过隐藏状态从前往后传递。有时候,当前时间步也可能由后面时间步决定。例如,当我们写下一个句子时,可能会根据句子后面的词来修改句子前面的用词。双向循环神经网络通过增加从后往前传递信息的隐藏层来更
- 李沐《动手学深度学习》课程笔记:15 实战:Kaggle房价预测 + 课程竞赛:加州2020年房价预测
非文的NLP修炼笔记
#李沐《动手学深度学习》课程笔记深度学习人工智能
15实战:Kaggle房价预测+课程竞赛:加州2020年房价预测1.访问和读取数据集importhashlibimportosimporttarfileimportzipfileimportrequestsDATA_HUB=dict()DATA_URL='http://d2l_data.s3-accelerate.amazonaws.com/'defdownload(name,cache_dir=
- 从零实现softmax回归【基于Pytorch】
卡仕达酱
回归pytorch人工智能机器学习python
参考资料:沐神——动手学深度学习importtorchimporttorchvisionfrommatplotlibimportpyplotaspltfromtorch.utilsimportdatafromtorchvisionimporttransformsfromd2limporttorchasd2lfromIPythonimportdisplaydefget_dataloader_work
- 《动手学深度学习(PyTorch版)》笔记8.6
南七澄江
python深度学习笔记深度学习pytorch笔记算法人工智能python
注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在JupyterNotebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python3.9.18下测试通过,同时对于书上部分章节也做了整合。Chapter8RecurrentNeuralNetworks8.6ConciseImplementationofRNNimporttorchfrom
- 《动手学深度学习(PyTorch版)》笔记8.7
南七澄江
深度学习笔记python深度学习pytorch笔记算法人工智能python
注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在JupyterNotebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python3.9.18下测试通过,同时对于书上部分章节也做了整合。Chapter8RecurrentNeuralNetworks8.7BackpropagationThroughTime通过时间反向传播(backpr
- Pytorch 复习总结 1
ScienceLi1125
pythonpytorchpython
Pytorch复习总结,仅供笔者使用,参考教材:《动手学深度学习》本文主要内容为:Pytorch张量的常见运算、线性代数、高等数学、概率论。Pytorch张量的常见运算、线性代数、高等数学、概率论部分见Pytorch复习总结1;Pytorch线性神经网络部分见Pytorch复习总结2;Pytorch多层感知机部分见Pytorch复习总结3;Pytorch深度学习计算部分见Pytorch复习总结4;
- 《动手学深度学习(PyTorch版)》笔记8.5
南七澄江
python深度学习笔记深度学习pytorch笔记算法人工智能python
注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在JupyterNotebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python3.9.18下测试通过,同时对于书上部分章节也做了整合。Chapter8RecurrentNeuralNetworks8.5ImplementationofRNNfromScratch8.5.1ModelD
- 2-2 动手学深度学习v2-损失函数-笔记
Alkali!
深度学习/机器学习入门深度学习笔记人工智能
损失函数,用来衡量预测值和真实值之间的区别。是机器学习里面一个非常重要的概念。三个常用的损失函数L2loss、L1loss、Huber’sRobustloss均方损失L2Lossl(y,y′)=12(y−y′)2l(y,y^{\prime})=\frac{1}{2}(y-y^{\prime})^{2}l(y,y′)=21(y−y′)2(除以222的时候,222和12\frac{1}{2}21相互抵
- 2-1 动手学深度学习v2-Softmax回归-笔记
Alkali!
深度学习/机器学习入门深度学习回归笔记
回归VS分类回归估计一个连续值分类预测一个离散类别从回归到多类分类回归单连续数值输出输出的区间:自然区间R\mathbb{R}R损失:跟真实值的区别分类通常多个输出(这个输出的个数是等于类别的个数)输出的第iii个元素是用来预测第iii类的置信度从回归到多类分类——均方损失对类别进行一位有效编码(因为类别不是一个数,可能是一个字符串等等)假设我们有nnn个类别,我们可以用最简单的一位有效编码来进行
- 1-4 动手学深度学习v2-线性回归的简洁实现-笔记
Alkali!
深度学习/机器学习入门深度学习线性回归笔记
通过使用深度学习框架来简洁地实现线性回归模型生成数据集importnumpyasnpimporttorchfromtorch.utilsimportdata#从torch.utils中引入一些处理数据的模块fromd2limporttorchasd2ltrue_w=torch.tensor([2,-3.4])true_b=4.2features,labels=d2l.synthetic_data(
- 深度学习代码|Multi-Headed Attention (MHA)多头注意力机制的代码实现
丁希希哇
深度学习代码手撕深度学习人工智能pytorch算法
相关文章李沐《动手学深度学习》注意力机制文章目录相关文章一、导入相关库二、准备工作(一)理论基础(二)定义PrepareForMultiHeadAttention模块三、多头注意模块(一)理论基础(二)创建MultiHeadAttention模块一、导入相关库importmathfromtypingimportOptional,List#从typing模块中导入Optional和List类型,用于
- 《动手学深度学习(PyTorch版)》笔记8.3
南七澄江
python深度学习笔记深度学习pytorch笔记人工智能python
注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在JupyterNotebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python3.9.18下测试通过,同时对于书上部分章节也做了整合。Chapter8RecurrentNeuralNetworks8.3LanguageModelsandtheDataset假设长度为TTT的文本序列中
- 《动手学深度学习(PyTorch版)》笔记8.4
南七澄江
深度学习笔记python深度学习pytorch笔记算法人工智能python
注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在JupyterNotebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python3.9.18下测试通过,同时对于书上部分章节也做了整合。Chapter8RecurrentNeuralNetworks8.4RecurrentNeuralNetworks对nnn元语法模型,单词xtx_tx
- 《动手学深度学习(PyTorch版)》笔记8.1
南七澄江
python深度学习笔记深度学习pytorch笔记算法人工智能python
注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在JupyterNotebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python3.9.18下测试通过,同时对于书上部分章节也做了整合。Chapter8RecurrentNeuralNetworks8.1SequenceModels用xtx_txt表示在时间步(timestep)t∈Z
- 《动手学深度学习(PyTorch版)》笔记8.2
南七澄江
深度学习笔记python深度学习pytorch笔记算法人工智能python
注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在JupyterNotebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python3.9.18下测试通过,同时对于书上部分章节也做了整合。Chapter8RecurrentNeuralNetworks8.2TextPreprocessing文本的预处理步骤通常包括:将文本作为字符串加载到
- 《动手学深度学习(PyTorch版)》笔记7.6
南七澄江
深度学习笔记python深度学习pytorch笔记算法人工智能python
注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在JupyterNotebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python3.9.18下测试通过,同时对于书上部分章节也做了整合。Chapter7ModernConvolutionalNeuralNetworks7.6ResidualNetworks(ResNet)随着我们设计越
- 《动手学深度学习(PyTorch版)》笔记7.7
南七澄江
python深度学习笔记深度学习pytorch笔记算法人工智能python
注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在JupyterNotebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python3.9.18下测试通过,同时对于书上部分章节也做了整合。Chapter7ModernConvolutionalNeuralNetworks7.7DenselyConnectedNetworks(DenseN
- 李沐《动手学深度学习》注意力机制
丁希希哇
李沐《动手学深度学习》学习笔记深度学习人工智能算法pytorch
系列文章李沐《动手学深度学习》预备知识张量操作及数据处理李沐《动手学深度学习》预备知识线性代数及微积分李沐《动手学深度学习》线性神经网络线性回归李沐《动手学深度学习》线性神经网络softmax回归李沐《动手学深度学习》多层感知机模型概念和代码实现李沐《动手学深度学习》多层感知机深度学习相关概念李沐《动手学深度学习》深度学习计算李沐《动手学深度学习》卷积神经网络相关基础概念李沐《动手学深度学习》卷积
- 动手学深度学习-02打卡
一技破万法
过拟合、欠拟合及其解决方案1.过拟合、欠拟合的概念2.权重衰减3.丢弃法模型选择、过拟合和欠拟合训练误差和泛化误差训练误差:模型在训练数据集上表现出的误差。泛化误差:模型在任意一个测试数据样本上表现出的误差的期望。模型选择验证数据集除训练集和测试集之外的数据。目的是为了从训练误差估计泛化误差。k折交叉验证把原始训练数据集分割成k个不重合的子数据集,然后做k次模型训练和验证。每一次我们使用一个子数据
- 《动手学深度学习(PyTorch版)》笔记7.4
南七澄江
深度学习笔记python深度学习pytorch笔记人工智能python算法
注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在JupyterNotebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python3.9.18下测试通过,同时对于书上部分章节也做了整合。Chapter7ModernConvolutionalNeuralNetworks7.4NetworkswithParallelConnections
- 《动手学深度学习(PyTorch版)》笔记7.5
南七澄江
python深度学习笔记深度学习pytorch笔记人工智能python
注:书中对代码的讲解并不详细,本文对很多细节做了详细注释。另外,书上的源代码是在JupyterNotebook上运行的,较为分散,本文将代码集中起来,并加以完善,全部用vscode在python3.9.18下测试通过,同时对于书上部分章节也做了整合。Chapter7ModernConvolutionalNeuralNetworks7.5BatchNormalization批量规范化应用于单个可选层
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt