将生成的dark模型转为caffe模型,并且测试性能

 新建convert.py

import sys
sys.path.append('caffe-master/python')
import caffe
import numpy as np
from collections import OrderedDict

DEBUG = True
def parse_cfg(cfgfile):
    def erase_comment(line):
        line = line.split('#')[0]
        return line
    blocks = []
    fp = open(cfgfile, 'r')
    block =  None
    line = fp.readline()
    while line != '':
        line = line.rstrip()
        if line == '' or line[0] == '#':
            line = fp.readline()
            continue
        elif line[0] == '[':
            if block:
                blocks.append(block)
            block = OrderedDict()
            block['type'] = line.lstrip('[').rstrip(']')
            if block['type'] == 'convolutional':
                block['batch_normalize'] = 0
        else:
            line = erase_comment(line)
            key,value = line.split('=')
            key = key.strip()
            if key == 'type':
                key = '_type'
            value = value.strip()
            block[key] = value
        line = fp.readline()

    if block:
        blocks.append(block)
    fp.close()
    return blocks
try:
    import caffe.proto.caffe_pb2 as caffe_pb2
except:
    try:
        import caffe_pb2
    except:
        print 'caffe_pb2.py not found. Try:'
        print '  protoc caffe.proto --python_out=.'
        exit()

def parse_caffemodel(caffemodel):
    model = caffe_pb2.NetParameter()
    print 'Loading caffemodel: ', caffemodel
    with open(caffemodel, 'rb') as fp:
        model.ParseFromString(fp.read())

    return model

def parse_prototxt(protofile):
    def line_type(line):
        if line.find(':') >= 0:
            return 0
        elif line.find('{') >= 0:
            return 1
        return -1

    def parse_block(fp):
        block = OrderedDict()
        line = fp.readline().strip()
        while line != '}':
            ltype = line_type(line)
            if ltype == 0: # key: value
                line = line.split('#')[0]
                key, value = line.split(':')
                key = key.strip()
                value = value.strip().strip('"')
                if block.has_key(key):
                    if type(block[key]) == list:
                        block[key].append(value)
                    else:
                        block[key] = [block[key], value]
                else:
                    block[key] = value
            elif ltype == 1: # blockname {
                key = line.split('{')[0].strip()
                sub_block = parse_block(fp)
                block[key] = sub_block
            line = fp.readline().strip()
            line = line.split('#')[0]
        return block

    fp = open(protofile, 'r')
    props = OrderedDict()
    layers = []
    line = fp.readline()
    while line != '':
        line = line.strip().split('#')[0]
        if line == '':
            line = fp.readline()
            continue
        ltype = line_type(line)
        if ltype == 0: # key: value
            key, value = line.split(':')
            key = key.strip()
            value = value.strip().strip('"')
            if props.has_key(key):
               if type(props[key]) == list:
                   props[key].append(value)
               else:
                   props[key] = [props[key], value]
            else:
                props[key] = value
        elif ltype == 1: # blockname {
            key = line.split('{')[0].strip()
            if key == 'layer':
                layer = parse_block(fp)
                layers.append(layer)
            else:
                props[key] = parse_block(fp)
        line = fp.readline()

    if len(layers) > 0:
        net_info = OrderedDict()
        net_info['props'] = props
        net_info['layers'] = layers
        return net_info
    else:
        return props

def is_number(s):
    try:
        float(s)
        return True
    except ValueError:
        return False

def print_prototxt(net_info):
    # whether add double quote
    def format_value(value):
        if is_number(value):
            return value
        elif value == 'true' or value == 'false' or value == 'MAX' or value == 'SUM' or value == 'AVE':
            return value
        else:
            return '\"%s\"' % value

    def print_block(block_info, prefix, indent):
        blanks = ''.join([' ']*indent)
        print('%s%s {' % (blanks, prefix))
        for key,value in block_info.items():
            if type(value) == OrderedDict:
                print_block(value, key, indent+4)
            elif type(value) == list:
                for v in value:
                    print('%s    %s: %s' % (blanks, key, format_value(v)))
            else:
                print('%s    %s: %s' % (blanks, key, format_value(value)))
        print('%s}' % blanks)

    props = net_info['props']
    layers = net_info['layers']
    print('name: \"%s\"' % props['name'])
    print('input: \"%s\"' % props['input'])
    print('input_dim: %s' % props['input_dim'][0])
    print('input_dim: %s' % props['input_dim'][1])
    print('input_dim: %s' % props['input_dim'][2])
    print('input_dim: %s' % props['input_dim'][3])
    print('')
    for layer in layers:
        print_block(layer, 'layer', 0)

def save_prototxt(net_info, protofile, region=True):
    fp = open(protofile, 'w')
    def format_value(value):
        if is_number(value):
            return value
        elif value == 'true' or value == 'false' or value == 'MAX' or value == 'SUM' or value == 'AVE':
            return value
        else:
            return '\"%s\"' % value

    def print_block(block_info, prefix, indent):
        blanks = ''.join([' ']*indent)
        print >>fp, '%s%s {' % (blanks, prefix)
        for key,value in block_info.items():
            if type(value) == OrderedDict:
                print_block(value, key, indent+4)
            elif type(value) == list:
                for v in value:
                    print >> fp, '%s    %s: %s' % (blanks, key, format_value(v))
            else:
                print >> fp, '%s    %s: %s' % (blanks, key, format_value(value))
        print >> fp, '%s}' % blanks

    props = net_info['props']
    layers = net_info['layers']
    print >> fp, 'name: \"%s\"' % props['name']
    print >> fp, 'input: \"%s\"' % props['input']
    print >> fp, 'input_dim: %s' % props['input_dim'][0]
    print >> fp, 'input_dim: %s' % props['input_dim'][1]
    print >> fp, 'input_dim: %s' % props['input_dim'][2]
    print >> fp, 'input_dim: %s' % props['input_dim'][3]
    print >> fp, ''
    for layer in layers:
        if layer['type'] != 'Region' or region == True:
            print_block(layer, 'layer', 0)
    fp.close()
def darknet2caffe(cfgfile, weightfile, protofile, caffemodel):
    net_info = cfg2prototxt(cfgfile)
    save_prototxt(net_info , protofile, region=False)

    net = caffe.Net(protofile, caffe.TEST)
    params = net.params

    blocks = parse_cfg(cfgfile)
    fp = open(weightfile, 'rb')
    header = np.fromfile(fp, count=5, dtype=np.int32)
    buf = np.fromfile(fp, dtype = np.float32)
    print (buf[:5])
    fp.close()
    layers = []
    layer_id =0 
    start = 0
    for block in blocks:
        if start >= buf.size:
            break

        if block['type'] == 'net':
            continue
        elif block['type'] == 'convolutional':
            batch_normalize = int(block['batch_normalize'])
            if block.has_key('name'):
                conv_layer_name = block['name']
                bn_layer_name = '%s-bn' % block['name']
                scale_layer_name = '%s-scale' % block['name']
            else:
                conv_layer_name = 'layer%d-conv' % layer_id
                bn_layer_name = 'layer%d-bn' % layer_id
                scale_layer_name = 'layer%d-scale' % layer_id

            if batch_normalize:
                start = load_conv_bn2caffe(buf, start, params[conv_layer_name], params[bn_layer_name], params[scale_layer_name])
            else:
                start = load_conv2caffe(buf,start, params[conv_layer_name])
            layer_id = layer_id+1
        elif block['type'] == 'connected':
            if block.has_key('name'):
                fc_layer_name = block['name']
            else:
                fc_layer_name = 'layer%d-fc' % layer_id
            start = load_fc2caffe(buf, start, params[fc_layer_name])
            layer_id = layer_id+1
        elif block['type'] == 'maxpool':
            layer_id = layer_id+1
        elif block['type'] == 'avgpool':
            layer_id = layer_id+1
        elif block['type'] == 'region':
            layer_id = layer_id + 1
        elif block['type'] == 'reorg':
            layer_id = layer_id + 1
        elif block['type'] == 'route':
            layer_id = layer_id + 1
        elif block['type'] == 'shortcut':
            layer_id = layer_id + 1
        elif block['type'] == 'yolo':
            layer_id = layer_id + 1
        elif block['type'] == 'softmax':
            layer_id = layer_id + 1
        elif block['type'] == 'upsample':
            layer_id = layer_id + 1
        elif block['type'] == 'cost':
            layer_id = layer_id + 1
        else:
            print('unknow layer type %s ' % block['type'])
            layer_id = layer_id + 1
    print('save prototxt to %s' % protofile)
    save_prototxt(net_info , protofile, region=True)
    print('save caffemodel to %s' % caffemodel)
    net.save(caffemodel)

def load_conv2caffe(buf, start, conv_param):
    weight = conv_param[0].data
    bias = conv_param[1].data
    conv_param[1].data[...] = np.reshape(buf[start:start+bias.size], bias.shape);   start = start + bias.size
    conv_param[0].data[...] = np.reshape(buf[start:start+weight.size], weight.shape); start = start + weight.size
    return start

def load_fc2caffe(buf, start, fc_param):
    weight = fc_param[0].data
    bias = fc_param[1].data
    fc_param[1].data[...] = np.reshape(buf[start:start+bias.size], bias.shape);   start = start + bias.size
    fc_param[0].data[...] = np.reshape(buf[start:start+weight.size], weight.shape); start = start + weight.size
    return start


def load_conv_bn2caffe(buf, start, conv_param, bn_param, scale_param):
    conv_weight = conv_param[0].data
    running_mean = bn_param[0].data
    running_var = bn_param[1].data
    scale_weight = scale_param[0].data
    scale_bias = scale_param[1].data
    scale_param[1].data[...] = np.reshape(buf[start:start+scale_bias.size], scale_bias.shape); start = start + scale_bias.size
    scale_param[0].data[...] = np.reshape(buf[start:start+scale_weight.size], scale_weight.shape); start = start + scale_weight.size
    bn_param[0].data[...] = np.reshape(buf[start:start+running_mean.size], running_mean.shape); start = start + running_mean.size
    bn_param[1].data[...] = np.reshape(buf[start:start+running_var.size], running_var.shape); start = start + running_var.size
    bn_param[2].data[...] = np.array([1.0])
    #bn_param[2].data[...] = np.array(buf[start:start + 1]); start = start + 1
    conv_param[0].data[...] = np.reshape(buf[start:start+conv_weight.size], conv_weight.shape); start = start + conv_weight.size
    return start

def cfg2prototxt(cfgfile):
    blocks = parse_cfg(cfgfile)

    layers = []
    props = OrderedDict() 
    bottom = 'data'
    layer_id = 0
    topnames = dict()
    for bidx in xrange(len(blocks)):
        block = blocks[bidx]
        if block['type'] == 'net':
            props['name'] = 'Darkent2Caffe'
            props['input'] = 'data'
            props['input_dim'] = ['1']
            props['input_dim'].append(block['channels'])
            props['input_dim'].append(block['height'])
            props['input_dim'].append(block['width'])
            continue
        elif block['type'] == 'convolutional':
            conv_layer = OrderedDict()
            conv_layer['bottom'] = bottom
            if block.has_key('name'):
                conv_layer['top'] = block['name']
                conv_layer['name'] = block['name']
            else:
                conv_layer['top'] = 'layer%d-conv' % layer_id
                conv_layer['name'] = 'layer%d-conv' % layer_id
            conv_layer['type'] = 'Convolution'
            convolution_param = OrderedDict()
            convolution_param['num_output'] = block['filters']
            convolution_param['kernel_size'] = block['size']
            if block['pad'] == '1':
                convolution_param['pad'] = str(int(convolution_param['kernel_size'])/2)
            convolution_param['stride'] = block['stride']
            if block['batch_normalize'] == '1':
                convolution_param['bias_term'] = 'false'
            else:
                convolution_param['bias_term'] = 'true'
            conv_layer['convolution_param'] = convolution_param
            layers.append(conv_layer)
            bottom = conv_layer['top']

            if block['batch_normalize'] == '1':
                bn_layer = OrderedDict()
                bn_layer['bottom'] = bottom
                bn_layer['top'] = bottom
                if block.has_key('name'):
                    bn_layer['name'] = '%s-bn' % block['name']
                else:
                    bn_layer['name'] = 'layer%d-bn' % layer_id
                bn_layer['type'] = 'BatchNorm'
                batch_norm_param = OrderedDict()
                batch_norm_param['use_global_stats'] = 'true'
                bn_layer['batch_norm_param'] = batch_norm_param
                layers.append(bn_layer)

                scale_layer = OrderedDict()
                scale_layer['bottom'] = bottom
                scale_layer['top'] = bottom
                if block.has_key('name'):
                    scale_layer['name'] = '%s-scale' % block['name']
                else:
                    scale_layer['name'] = 'layer%d-scale' % layer_id
                scale_layer['type'] = 'Scale'
                scale_param = OrderedDict()
                scale_param['bias_term'] = 'true'
                scale_layer['scale_param'] = scale_param
                layers.append(scale_layer)

            if block['activation'] != 'linear':
                relu_layer = OrderedDict()
                relu_layer['bottom'] = bottom
                relu_layer['top'] = bottom
                if block.has_key('name'):
                    relu_layer['name'] = '%s-act' % block['name']
                else:
                    relu_layer['name'] = 'layer%d-act' % layer_id
                relu_layer['type'] = 'ReLU'
                if block['activation'] == 'leaky':
                    relu_param = OrderedDict()
                    relu_param['negative_slope'] = '0.1'
                    relu_layer['relu_param'] = relu_param
                layers.append(relu_layer)
            topnames[layer_id] = bottom
            layer_id = layer_id+1
        elif block['type'] == 'maxpool':
            max_layer = OrderedDict()
            max_layer['bottom'] = bottom
            if block.has_key('name'):
                max_layer['top'] = block['name']
                max_layer['name'] = block['name']
            else:
                max_layer['top'] = 'layer%d-maxpool' % layer_id
                max_layer['name'] = 'layer%d-maxpool' % layer_id
            max_layer['type'] = 'Pooling'
            pooling_param = OrderedDict()
            pooling_param['kernel_size'] = block['size']
            pooling_param['stride'] = block['stride']
            pooling_param['pool'] = 'MAX'
            if block.has_key('pad') and int(block['pad']) == 1:
                pooling_param['pad'] = str((int(block['size'])-1)/2)
            elif int(block['stride']) == 1:
                pooling_param['pad'] = str((int(block['size'])-1)/2)
            max_layer['pooling_param'] = pooling_param
	    print max_layer
            layers.append(max_layer)
            bottom = max_layer['top']
            topnames[layer_id] = bottom
            layer_id = layer_id+1
        elif block['type'] == 'avgpool':
            avg_layer = OrderedDict()
            avg_layer['bottom'] = bottom
            if block.has_key('name'):
                avg_layer['top'] = block['name']
                avg_layer['name'] = block['name']
            else:
                avg_layer['top'] = 'layer%d-avgpool' % layer_id
                avg_layer['name'] = 'layer%d-avgpool' % layer_id
            avg_layer['type'] = 'Pooling'
            pooling_param = OrderedDict()
            pooling_param['kernel_size'] = 7
            pooling_param['stride'] = 1
            pooling_param['pool'] = 'AVE'
            avg_layer['pooling_param'] = pooling_param
            layers.append(avg_layer)
            bottom = avg_layer['top']
            topnames[layer_id] = bottom
            layer_id = layer_id + 1
        elif block['type'] == 'route':
            if DEBUG:
                print("block:%s" % block)       
            from_layers = block['layers'].split(',')
	    bottom_tmp = []
            if len(from_layers) == 1:
		if int(from_layers[0]) < 0:
                    prev_layer_id = layer_id + int(from_layers[0])
		else:
                    prev_layer_id = int(from_layers[0])
                bottom = topnames[prev_layer_id]
                topnames[layer_id] = bottom
                layer_id = layer_id + 1
            else:
		for index in range(len(from_layers)):
		    if int(from_layers[index]) < 0:
                        prev_layer_id = layer_id + int(from_layers[index])
		    else:
                        prev_layer_id = int(from_layers[index])
		    bottom = topnames[prev_layer_id]
		    bottom_tmp.append(bottom)
                concat_layer = OrderedDict()
                concat_layer['bottom'] = bottom_tmp
                if block.has_key('name'):
                    concat_layer['top'] = block['name']
                    concat_layer['name'] = block['name']
                else:
                    concat_layer['top'] = 'layer%d-concat' % layer_id
                    concat_layer['name'] = 'layer%d-concat' % layer_id
                concat_layer['type'] = 'Concat'
                
                if DEBUG:
                    print("concat_layer: %s" % concat_layer)
                    
                layers.append(concat_layer)
                bottom = concat_layer['top']
                topnames[layer_id] = bottom
                layer_id = layer_id+1
        elif block['type'] == 'shortcut':
            prev_layer_id1 = layer_id + int(block['from'])
            prev_layer_id2 = layer_id - 1
            bottom1 = topnames[prev_layer_id1]
            bottom2= topnames[prev_layer_id2]
            shortcut_layer = OrderedDict()
            shortcut_layer['bottom'] = [bottom1, bottom2]
            if block.has_key('name'):
                shortcut_layer['top'] = block['name']
                shortcut_layer['name'] = block['name']
            else:
                shortcut_layer['top'] = 'layer%d-shortcut' % layer_id
                shortcut_layer['name'] = 'layer%d-shortcut' % layer_id
            shortcut_layer['type'] = 'Eltwise'
            eltwise_param = OrderedDict()
            eltwise_param['operation'] = 'SUM'
            shortcut_layer['eltwise_param'] = eltwise_param
            layers.append(shortcut_layer)
            bottom = shortcut_layer['top']
 
            if block['activation'] != 'linear':
                relu_layer = OrderedDict()
                relu_layer['bottom'] = bottom
                relu_layer['top'] = bottom
                if block.has_key('name'):
                    relu_layer['name'] = '%s-act' % block['name']
                else:
                    relu_layer['name'] = 'layer%d-act' % layer_id
                relu_layer['type'] = 'ReLU'
                if block['activation'] == 'leaky':
                    relu_param = OrderedDict()
                    relu_param['negative_slope'] = '0.1'
                    relu_layer['relu_param'] = relu_param
                layers.append(relu_layer)
            topnames[layer_id] = bottom
            layer_id = layer_id+1           
            
        elif block['type'] == 'connected':
            fc_layer = OrderedDict()
            fc_layer['bottom'] = bottom
            if block.has_key('name'):
                fc_layer['top'] = block['name']
                fc_layer['name'] = block['name']
            else:
                fc_layer['top'] = 'layer%d-fc' % layer_id
                fc_layer['name'] = 'layer%d-fc' % layer_id
            fc_layer['type'] = 'InnerProduct'
            fc_param = OrderedDict()
            fc_param['num_output'] = int(block['output'])
            fc_layer['inner_product_param'] = fc_param
            layers.append(fc_layer)
            bottom = fc_layer['top']

            if block['activation'] != 'linear':
                relu_layer = OrderedDict()
                relu_layer['bottom'] = bottom
                relu_layer['top'] = bottom
                if block.has_key('name'):
                    relu_layer['name'] = '%s-act' % block['name']
                else:
                    relu_layer['name'] = 'layer%d-act' % layer_id
                relu_layer['type'] = 'ReLU'
                if block['activation'] == 'leaky':
                    relu_param = OrderedDict()
                    relu_param['negative_slope'] = '0.1'
                    relu_layer['relu_param'] = relu_param
                layers.append(relu_layer)
            topnames[layer_id] = bottom
            layer_id = layer_id+1

        ##add reorg layer yolov2###############
        elif block['type'] == 'reorg':
            reorg_layer = OrderedDict()
            reorg_layer['bottom'] = bottom
            if block.has_key('name'):
                reorg_layer['top'] = block['name']
                reorg_layer['name'] = block['name']
            else:
                reorg_layer['top'] = 'layer%d-reorg' % layer_id
                reorg_layer['name'] = 'layer%d-reorg' % layer_id
            reorg_layer['type'] = 'Reorg'
            reorg_param = OrderedDict()
            reorg_param['stride'] = 2
            reorg_layer['reorg_param'] = reorg_param
            layers.append(reorg_layer)
            bottom = reorg_layer['top']
            topnames[layer_id] = bottom
            layer_id = layer_id + 1
        ##add upsample layer yolov3###############
	elif block['type'] == 'upsample' :
	    upsample_layer = OrderedDict()
	    upsample_layer['bottom'] = bottom
	    if block.has_key('name'):
		upsample_layer['top'] = block['name']
		upsample_layer['name'] = block['name']
	    else:
		upsample_layer['top'] = 'layer%d-upsample' % layer_id
		upsample_layer['name'] = 'layer%d-upsample' % layer_id
	    upsample_layer['type'] = 'DeephiResize'
	    upsample_param = OrderedDict()
	    upsample_param['scale_h'] = 2
	    upsample_param['scale_w'] = 2
	    upsample_layer['deephi_resize_param'] = upsample_param
	    layers.append(upsample_layer)
	    bottom = upsample_layer['top']
	    topnames[layer_id] = bottom
	    layer_id = layer_id + 1
	elif block['type'] == 'region' or block['type'] == 'yolo':
	    layer_id = layer_id + 1
	#######################################
        else:
            print('unknow layer type %s ' % block['type'])
            topnames[layer_id] = bottom
            layer_id = layer_id + 1

    net_info = OrderedDict()
    net_info['props'] = props
    net_info['layers'] = layers
    return net_info

if __name__ == '__main__':
    import sys
    if len(sys.argv) != 5:
        print('try:')
        print('python convert.py yolov3.cfg yolov3.weights yolov3.prototxt yolov3.caffemodel')
        print('')
        print('please add name field for each block to avoid generated name')
        exit()
    cfgfile = sys.argv[1]
    weightfile = sys.argv[2]
    protofile = sys.argv[3]
    caffemodel = sys.argv[4]
    darknet2caffe(cfgfile, weightfile, protofile, caffemodel)

 新建darknet2caffe.sh 执行

#!/bin/bash
python2 convert.py ./ceshi/dpu_coco.cfg ./ceshi/dpu_coco_100000.weights yyd.prototxt yyd.caffemodel

前两个路径是输入  后两个是输出路径

该caffe需要特别版caffe,有yolo的那种
 

 

你可能感兴趣的:(caffe)