- [01] 动态规划解题套路框架
_魔佃_
本文解决几个问题:动态规划是什么?解决动态规划问题有什么技巧?如何学习动态规划?刷题刷多了就会发现,算法技巧就那几个套路。所以本文放在第一章,来扒一扒动态规划的裤子,形成一套解决这类问题的思维框架,希望能够成为解决动态规划问题的一部指导方针。本文就来讲解该算法的基本套路框架,下面上干货。labuladong的算法小抄首先,动态规划问题的一般形式就是求最值。动态规划其实是运筹学的一种最优化方法,只不
- 最优化方法Python计算:一元函数搜索算法——二分法
戌崂石
最优化方法最优化方法python
设一元目标函数f(x)f(x)f(x)在区间[a0,b0]⊆R[a_0,b_0]\subseteq\text{R}[a0,b0]⊆R(其长度记为λ\lambdaλ)上为单峰函数,且在(a0,b0)(a_0,b_0)(a0,b0)内连续可导,即其导函数f′(x)f'(x)f′(x)在(a0,b0)(a_0,b_0)(a0,b0)内连续。在此增强的条件下,可以加速迭代计算压缩区间的过程。仍然设置计算精
- 机器学习最优化方法之梯度下降
whemy
1、梯度下降出现的必然性利用最小二乘法求解线性回归的参数时,求解的过程中会涉及到矩阵求逆的步骤。随着维度的增多,矩阵求逆的代价会越来越大,而且有些矩阵没有逆矩阵,这个时候就需要用近似矩阵,影响精度。另外,在绝大多数机器学习算法情况下(如LR),损失函数要复杂的多,根本无法得到参数估计值的表达式。因此需要一种更普适的优化方法,这就是梯度下降。其实随机梯度下降才是实际应用中最常用的求解方法,但是其基础
- 深度学习之反向传播算法(backward())
Tomorrowave
人工智能深度学习算法人工智能
文章目录概念算法的思路概念反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。(误差的反向传播)算法的思路多层神经网络的教学过程反向传播算法为了说明这一点使用如下图所示处理具有两个输入和一
- 机器学习-梯度下降法
小旺不正经
人工智能机器学习人工智能python
不是一个机器学习算法是一种基于搜索的最优化方法作用:最小化一个损失函数梯度上升法:最大化一个效用函数并不是所有函数都有唯一的极值点解决方法:多次运行,随机化初始点梯度下降法的初始点也是一个超参数代码演示importnumpyasnpimportmatplotlib.pyplotaspltplot_x=np.linspace(-1.,6.,141)plot_y=(plot_x-2.5)**2-1.p
- 最优化理论习题(与考试相关)
ˇasushiro
最优化理论笔记
文章目录凸集与凸函数的证明单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法凸集与凸函数的证明凸函数证明就是求HessianHessianHessian矩阵是否为正定矩阵即可单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法
- 最优化方法之梯度下降法和牛顿法
thatway1989
算法分析机器学习深度学习线性代数
大部分的机器学习算法的本质都是建立优化模型,通过最优化方法对目标函数(或损失函数)进行优化,从而训练出最好的模型。最常见的最优化方法有梯度下降法、牛顿法。最优化方法:最优化方法,即寻找函数极值点的数值方法。通常采用的是迭代法,它从一个初始点x0开始,反复使用某种规则从x.k移动到下一个点x.k+1,直至到达函数的极值点。这些规则一般会利用一阶导数信息即梯度,或者二阶导数信息即Hessian矩阵。算
- 进化计算——求解优化问题(一)
_hermit:
计算智能人工智能学习
进化计算——求解优化问题文章目录一、优化问题是什么?二、优化问题分类1.依据目标数量分类2.依据变量类型分类3.依据约束条件分类三、优化问题的数学模型四、最优化方法1.两者对比-求解步骤2.两者对比-优缺点五、生物学遗传进化观点进化计算的一般步骤:六、遗传算法(GA)(重点)1.遗传算法基本原理几个概念说明:2.遗传算法的基本结构3.遗传算法与传统优化方法比较:七、用遗传算法求解问题(重点)1.编
- 梯度下降法(Gradient Descent)
Debroon
#机器学习#凸优化
梯度下降法(GradientDescent)梯度下降法批量梯度下降法随机梯度下降法scikit-learn中的随机梯度下降法小批量梯度下降法梯度下降法梯度下降法,不是一个机器学习算法(既不是再做监督学习,也不是非监督学习,分类、回归问题都解决不了),是一种基于搜索的最优化方法。梯度下降法作用是,最小化一个损失函数;而如果我们要最大化一个效用函数,应该使用梯度上升法。这个二维平面描述了,当我们定义了
- 凸优化 3:最优化方法
Debroon
#凸优化算法
凸优化3:最优化方法最优化方法适用场景对比费马引理一阶优化算法梯度下降最速下降二阶优化算法牛顿法Hessian矩阵Hessian矩阵的逆Hessian矩阵和梯度的区别牛顿法和梯度下降法的区别拟牛顿法DFP、BFGS/L-BFGS数值优化算法坐标下降法SMO算法基于导数的函数优化解析优化算法/精确解无约束问题-求解驻点方程有等式约束问题-拉格朗日乘数法有等式和不等式约束问题-KKT条件基于随机数函数
- 参数更新方法 初始值 抑制过拟合 Batch Normalization等 《深度学习入门》第六章
Dirac811
layout:posttitle:深度学习入门基于Python的理论实现subtitle:第六章与学习相关的技巧tags:[Machinelearning,Reading]第六章与学习相关的技巧本章像是一个补充,主题涉及寻找最优权重参数的最优化方法、权重参数的初始值、超参数的设定方法等。此外,为了应对过拟合,本章还将介绍权值衰减、Dropout等正则化方法,并进行实现。最后将对近年来众多研究中使用
- 【最优化方法】对称矩阵的对角化
撕得失败的标签
最优化方法矩阵线性代数正交化对角化
文章目录正交化方法示例矩阵正交化正交化方法设RnR^nRn中线性无关组a1,a2,a3,…,ana_1,a_2,a_3,\dots,a_na1,a2,a3,…,an,令β1=α1β2=α2−[α2β1]∣∣β1∣∣β1β3=α3−[α3β1]∣∣β1∣∣β1−[α3β2]∣∣β2∣∣β2βn=α3−[αnβ1]∣∣β1∣∣β1−⋯−[αnβn−1]∣∣βn−1∣∣βn−1\begin{aligne
- 【最优化方法】无约束优化问题(最速下降法、牛顿法、最小二乘)
撕得失败的标签
最优化方法线性代数最小二乘法最速下降法牛顿法无约束最优化
文章目录最速下降法示例牛顿法阻尼牛顿法示例最小二乘问题最速下降法最速下降法(SteepestDescentMethod)是一种基于负梯度方向进行迭代的最优化算法,用于寻找一个函数的最小值。该方法也被称为梯度下降法,是一种迭代的一阶优化算法。算法的基本思想是从当前点出发,沿着当前点的负梯度方向,以一定的步长(学习率)移动到新的点,重复这个过程直至达到停止条件。下面是最速下降法的基本步骤:给出x0∈R
- 【最优化方法】约束最优化问题
撕得失败的标签
最优化方法约束最优化KKT定理二次罚函数方法
文章目录不等式约束问题可行方向线性化可行方向序列可行方向KKT定理示例等式约束问题二次罚函数方法示例不等式约束问题考虑约束最优化问题minf(x)s.t.ci(x)=0,i=1,2,⋯ ,m′,ci(x)⩾0,i=m′+1,m′+2,⋯ ,m,\begin{aligned}\min&\quadf(x)\\\mathrm{s.t.}&\quadc_i(x)=0,\quadi=1,2,\cdots,
- 【最优化方法】无约束优化问题(函数梯度、下降方向、最优性)
撕得失败的标签
最优化方法线性代数最优化方法下降方向无约束优化问题最优性条件
文章目录下降方向下降方向与梯度关系例题偏导数方向导数梯度(导数)下降方向最优性条件一阶必要条件二阶必要条件二阶充分条件无约束凸规划的最优性条件我们把一元方程推广到nnn维无约束极小化问题,得到解无约束优化问题minx∈Rnf(x)\min_{x\in\mathbf{R}^n}f(x)x∈Rnminf(x)下降方向设f(x)f(x)f(x)为定义在空间Rn\mathbf{R}^nRn上的连续函数,
- 最优化方法Python计算:无约束优化应用——神经网络分类模型
戌崂石
最优化方法python神经网络分类最优化方法机器学习
Hello,2024.用MLPModel类(详见博文《最优化方法Python计算:无约束优化应用——神经网络回归模型》)和Classification类(详见博文《最优化方法Python计算:无约束优化应用——逻辑分类模型》)可以构建用于分类的神经网络。classMLPClassifier(Classification,MLPModel):'''神经网络分类模型'''用MLPClassifier解
- 【最优化方法】凸优化基本概念
撕得失败的标签
最优化方法线性代数最优化方法凸优化
文章目录凸优化(ConvexOptimization)凸集(ConvexSet)凸集合的运算(OperationsonConvexSets)凸函数(ConvexFunction)凸优化问题(ConvexOptimizationProblem)凸优化(ConvexOptimization)凸优化问题具有许多重要的性质,使得其在理论和实践中都得到广泛应用。这些性质包括全局最优解的存在性、局部最优解即为
- 【最优化方法】凸二次优化
撕得失败的标签
最优化方法线性代数最优化方法凸二次优化海森矩阵Hessian
文章目录凸函数的判别凸二次优化海森矩阵(Hessianmatrix)判断函数凹凸性示例凸函数的判别设S⊂RnS\subsetR^nS⊂Rn是非空开凸集,f:S→Rf:S\rightarrowRf:S→R可微,则(1)fff是SSS上的凸函数,当且仅当f(x2)⩾f(x1)+∇f(x1)T(x2−x1),∀x1,x2∈Sf(x_2)\geqslantf(x_1)+\nablaf(x_1)^T(x_2
- 【最优化方法】矩阵的二次型
撕得失败的标签
最优化方法矩阵线性代数最优化方法
文章目录矩阵二次型的定义正定性、负定性、半定性和不定性示例矩阵二次型的定义矩阵的二次型是一个与矩阵和向量相关的二次多项式。对于一个实数域上的二次型,给定一个n×nn×nn×n的对称矩阵AAA和一个列向量xxx(xxx是一个n×1n×1n×1的列向量),其二次型定义为:Q(x)=xTAxQ(x)=x^TAxQ(x)=xTAx这个二次型表示可以更详细地展开为:Q(x)=∑i=1n∑j=1naijxiy
- 最优化方法Python计算:无约束优化应用——神经网络回归模型
戌崂石
最优化方法python神经网络回归最优化方法机器学习
人类大脑有数百亿个相互连接的神经元(如下图(a)所示),这些神经元通过树突从其他神经元接收信息,在细胞体内综合、并变换信息,通过轴突上的突触向其他神经元传递信息。我们在博文《最优化方法Python计算:无约束优化应用——逻辑回归模型》中讨论的逻辑回归模型(如下图(b)所示)与神经元十分相似,由输入端接收数据x=(x1x2⋮xn)\boldsymbol{x}=\begin{pmatrix}x_1\\
- 最优化方法Python计算:无约束优化应用——逻辑分类模型
戌崂石
最优化方法python分类机器学习最优化方法
逻辑回归模型更多地用于如下例所示判断或分类场景。例1某银行的贷款用户数据如下表:欠款(元)收入(元)是否逾期17000800Yes220002500No350003000Yes440004000No520003800No显然,客户是否逾期(记为yyy)与其欠款额(记为x1x_1x1)和收入(记为x2x_2x2)相关。如果将客户逾期还款记为1,未逾期记为0,我们希望根据表中数据建立R2→{0,1}\
- 最优化方法Python计算:无约束优化应用——逻辑回归模型
戌崂石
最优化方法python逻辑回归机器学习最优化方法
S型函数sigmoid(x)=11+e−x\text{sigmoid}(x)=\frac{1}{1+e^{-x}}sigmoid(x)=1+e−x1将全体实数R\text{R}R映射到(0,1)(0,1)(0,1),称为逻辑函数。其图像为该函数连续、有界、单调、可微,性质量好。拟合函数为F(w;x)=sigmoid((x⊤,1)w)=11+e−(x⊤,1)wF(\boldsymbol{w};\bo
- 机器学习中常用的矩阵公式
ᝰꫛꪮꪮꫜ hm
机器学习矩阵机器学习深度学习
因为有监督的机器学习一般是,给定输入x,选择一个模型f作为函数,有f(x)预测出。要得到f的参数,需要定义一个损失函数,来判断预测值与实际值y之间的接近程度。模型学习的过程是求使得loss函数L(f(x),y)最小的参数,这是一个优化问题,一般采用和梯度相关的最优化方法,如梯度下降。一、矩阵迹的定义矩阵的迹:就是矩阵的主对角线上所有元素的和。1.矩阵A(n*n)的迹:2.矩阵A(m*n)B(n*m
- 算法中的最优化方法与实现(第4课 二次型规划的有效集法)
komjay
算法中的最优化方法与实现算法
一、学习目标1.学习有效集法如何求解二次型规划问题二、问题描述三、算法思想1.在每次迭代中,我们都以已知的可行点为起点,把在该点起作用约束作为等式约束,在此约束下极小化目标函数f(x),其余的约束暂且不管,求得比较好的可行点后,再重复以上做法。2.原理推导:(1)对每一步迭代中,定义好现今的问题:(2)修改输入x和f(x)函数,原问题也发生变化:(3)确定下一个可行点的条件:(4)如果不是可行点,
- 算法中的最优化方法与实现 (第5 6课 无约束的非线性规划)
komjay
算法中的最优化方法与实现算法1024程序员节
一、学习目标1.了解非线性问题的标准形式和各种求解方法2.学习牛顿法和拟牛顿法3.学习方向测定-线性最小方法4.学习各种搜索法二、非线性问题1.非线性问题的规范式相比于前两种问题,会显得十分简单:需要注意:这节课先讨论没有约束条件的非线性问题,这样能保证我们在使用后续算法进行自由的搜索。2.求解算法分三类:第一类是以牛顿法为主体的方法;第二类是通过方向测定和线性优化的方法进行优化;第三类是不进行求
- 算法中的最优化方法和实现 (第7课 有约束的非线性规划)
komjay
算法中的最优化方法与实现算法
一、学习目标根据约束条件的类型,将问题分为4类:线性等式、非线性等式、线性不等式、非线性不等式。学习对于不同的问题,使用不同的方法进行求解。统一的思想都是消解法,即消去约束条件,将有约束的问题转化为无约束的问题,再进行求解。注意:我们说的非线性规划,说的是目标函数是非线性的,而上面讲的线性和非线性,指的是约束函数。二、线性等式约束的非线性规划对于等式约束,我们可以通过映射法将约束条件约去。原理就是
- 算法中的最优化方法与实现(第3课 二次型规划)
komjay
算法中的最优化方法与实现算法
一、学习目标1.了解二次型问题的内容2.了解改进单纯形法解决二次型问题的过程二、二次型问题1.与线性问题相同,二次型问题的描述形式也有两类(type1:一般形式,type2:标准形式):其中H矩阵是二次项的参数矩阵,该项会直接导致整个模型是否存在最优解的问题。下面展示几个特殊二次项的图像:下面左图存在多个极值点,右图则不存在最优值:2.关于将一般形式转化为标准形式,其方式与线性问题一样:三、改进单
- 最优化方法Python计算:无约束优化应用——回归模型的测试
戌崂石
最优化方法python线性回归最优化方法机器学习
实践中,除了用训练数据训练回归模型,使用线性回归模型做预测前,通常需要对训练结果进行测试。所谓测试指的是用另一组带有标签的数据数据集(xi⊤,yi),i=1,2,⋯ ,m(\boldsymbol{x}^\top_i,y_i),i=1,2,\cdots,m(xi⊤,yi),i=1,2,⋯,m,用训练所得的最优模式w0\boldsymbol{w}_0w0,得预测值yi′y'_iyi′,i=1,2,⋯
- 最优化方法Python计算:信赖域算法
戌崂石
最优化方法python人工智能最优化方法
作为求解目标函数f(x)f(\boldsymbol{x})f(x)无约束优化问题的策略之一的信赖域方法,与前讨论的线性搜索策略略有不同。线性搜索策略是在当前点xk\boldsymbol{x}_kxk处先确定搜索方向dk\boldsymbol{d}_kdk,再确定在该方向上的搜索步长αk\alpha_kαk。以此计算下一步搜索点xk+1=xk+αkdk.\boldsymbol{x}_{k+1}=\b
- 最优化方法Python计算:BFGS算法
戌崂石
最优化方法python机器学习最优化方法
按秩1法(详见博文《最优化方法Python计算:秩1拟牛顿法》)计算的修正矩阵Qk+1=Qk+Ek\boldsymbol{Q}_{k+1}=\boldsymbol{Q}_k+\boldsymbol{E}_kQk+1=Qk+Ek无法保证其正定性。这时,dk+1=−Qk+1gk+1\boldsymbol{d}_{k+1}=-\boldsymbol{Q}_{k+1}\boldsymbol{g}_{k+1
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen