C/C++语言实现矩阵求逆运算—高斯约化/消元法

在网站上搜索了一下,发现C语言代码可能是很原始的版本,编译的时候会报出诸多错误。

不过大致还是能看懂,就看你能不能转过弯来咯。

原文的代码是要存成矩阵形式,而实际代码写的着则是一维数组形式。

可以直接使用的代码如下:

#include 
#include 
#include 

// 对矩阵求逆,结果保存在a中
int brinv(double a[], int n)
{
	int *is,*js,i,j,k,l,u,v;
	double d,p;
	is = new int[n];
	js = new int[n];
	for (k=0; k<=n-1; k++)
	{
		d=0.0;
		for (i=k; i<=n-1; i++)
		for (j=k; j<=n-1; j++)
		{
			l=i*n+j; p=fabs(a[l]);
			if (p>d) { d=p; is[k]=i; js[k]=j;}
		}
		if (d+1.0==1.0)
		{
			free(is); free(js); printf("err**not inv\n");
			return(0);
		}
		if (is[k]!=k)
			for (j=0; j<=n-1; j++)
			{
				u=k*n+j; v=is[k]*n+j;
				p=a[u]; a[u]=a[v]; a[v]=p;
			}
		if (js[k]!=k)
			for (i=0; i<=n-1; i++)
			{
				u=i*n+k; v=i*n+js[k];
				p=a[u]; a[u]=a[v]; a[v]=p;
			}
		l=k*n+k;
		a[l]=1.0/a[l];
		for (j=0; j<=n-1; j++)
			if (j!=k)
			{ u=k*n+j; a[u]=a[u]*a[l];}
		for (i=0; i<=n-1; i++)
			if (i!=k)
				for (j=0; j<=n-1; j++)
		if (j!=k)
		{
			u=i*n+j;
			a[u] -= a[i*n+k]*a[k*n+j];
		}
		for (i=0; i<=n-1; i++)
			if (i!=k)
			{
				u=i*n+k;
				a[u] = -a[u]*a[l];
			}
	}
	for (k=n-1; k>=0; k--)
	{
		if (js[k]!=k)
		for (j=0; j<=n-1; j++)
		{
			u=k*n+j; v=js[k]*n+j;
		p=a[u]; a[u]=a[v]; a[v]=p;
		}
		if (is[k]!=k)
		for (i=0; i<=n-1; i++)
		{ 
			u=i*n+k; v=i*n+is[k];
			p=a[u]; a[u]=a[v]; a[v]=p;
		}
	}
	free(is); free(js);
	return(1);
}

// 求矩阵的乘积 C = A.*B
void brmul(double a[], double b[],int m,int n,int k,double c[])
{
	int i,j,l,u;
	for (i=0; i<=m-1; i++)
		for (j=0; j<=k-1; j++)
		{
			u=i*k+j; c[u]=0.0;
			for (l=0; l<=n-1; l++)
				c[u] += a[i*n+l]*b[l*k+j];	// 矩阵乘法,没什么好说的
		}
}

int main()
{
	int i,j;
	static double a[16]={0.2368,0.2471,0.2568,1.2671,
						1.1161,0.1254,0.1397,0.1490,
						0.1582,1.1675,0.1768,0.1871,
						0.1968,0.2071,1.2168,0.2271};
	static double b[16],c[16];		// 原来这里a b c的声明有误
	for (i=0; i<=3; i++)
		for (j=0; j<=3; j++)
			b[4*i+j]=a[4*i+j];
	cout << (i=brinv(a,4)) << endl;
	if (i!=0)
	{
		printf("MAT A IS:\n");
		for (i=0; i<=3; i++)
		{
			for (j=0; j<=3; j++)
				printf("%13.4f",b[4*i+j]);
			printf("\n");
		}
		printf("\nMAT A- IS:\n");
		for (i=0; i<=3; i++)
		{
			for (j=0; j<=3; j++)
				printf("%13.4f",a[4*i+j]);
			printf("\n");
		}
		printf("\nMAT AA- IS:\n");

		brmul(b,a,4,4,4,c);
		for (i=0; i<=3; i++)
		{
			for (j=0; j<=3; j++)
				printf("%13.4f",c[4*i+j]);
			printf("\n");
		}
	}
}
后面我会把该方法转换成使用二维数组方式进行计算。

因为工作需要搞这么多复杂的数学,真悔恨当初线性代数没有好好学…………

下面是修改了之后的结果,输入参数为double **,在使用前如果需要备份原矩阵,即需要将矩阵拷贝:

int matrixInversion(double **a, int n)
{
	int *is = new int[n];
	int *js = new int[n];
	int i,j,k;
	double d,p;
	for ( k = 0; k < n; k++)
	{
		d = 0.0;
		for (i=k; i<=n-1; i++)
			for (j=k; j<=n-1; j++)
			{
				p=fabs(a[i][j]);
				if (p>d) { d=p; is[k]=i; js[k]=j;}
			}
			if ( 0.0 == d )
			{
				free(is); free(js); printf("err**not inv\n");
				return(0);
			}
			if (is[k]!=k)
				for (j=0; j<=n-1; j++)
				{
					p=a[k][j];
					a[k][j]=a[is[k]][j];
					a[is[k]][j]=p;
				}
			if (js[k]!=k)
				for (i=0; i<=n-1; i++)
				{
					p=a[i][k];
					a[i][k]=a[i][js[k]];
					a[i][js[k]]=p;
				}
			a[k][k] = 1.0/a[k][k];
			for (j=0; j<=n-1; j++)
				if (j!=k)
				{
					a[k][j] *= a[k][k];
				}
			for (i=0; i<=n-1; i++)
				if (i!=k)
					for (j=0; j<=n-1; j++)
						if (j!=k)
						{
							a[i][j] -= a[i][k]*a[k][j];
						}
			for (i=0; i<=n-1; i++)
				if (i!=k)
				{
					a[i][k] = -a[i][k]*a[k][k];
				}
	}
	for ( k = n-1; k >= 0; k--)
	{
		if (js[k]!=k)
			for (j=0; j<=n-1; j++)
			{
				p = a[k][j];
				a[k][j] = a[js[k]][j];
				a[js[k]][j]=p;
			}
			if (is[k]!=k)
				for (i=0; i<=n-1; i++)
				{ 
					p = a[i][k];
					a[i][k]=a[i][is[k]];
					a[i][is[k]] = p;
				}
	}
	free(is); free(js);
	return(1);
}


int main()
{
	//prior_testMatrix();	// 这个是测试原来的方法的函数,内容和原来的main函数一致
	int i,j;
	static double a[4][4]={{0.2368,0.2471,0.2568,1.2671},
						{1.1161,0.1254,0.1397,0.1490},
						{0.1582,1.1675,0.1768,0.1871},
						{0.1968,0.2071,1.2168,0.2271}};
	static double **b = new double *[4];		// 拷贝a

	for (i=0; i< 4; i++)
	{
		b[i] = new double[4];
		for (j=0; j< 4; j++)
			b[i][j]=a[i][j];		// 拷贝a
	}

	cout << (i=matrixInversion(b,4)) << endl;	// 计算逆矩阵,结果在b中
	if (i!=0)
	{
		printf("MAT A IS:\n");
		for (i=0; i<=3; i++)
		{
			for (j=0; j<=3; j++)
				printf("%13.4f",a[i][j]);
			printf("\n");
		}
		printf("\nMAT A- IS:\n");
		for (i=0; i<=3; i++)
		{
			for (j=0; j<=3; j++)
				printf("%13.4f",b[i][j]);
			printf("\n");
		}
	}
}

 

你可能感兴趣的:(算法)