神经网路权重初始化方式

在开始训练网络之前,还需要初始化网络的参数。方式有:

       错误:全零初始化。让我们从应该避免的错误开始。在训练完毕后,虽然不知道网络中每个权重的最终值应该是多少,但如果数据经过了恰当的归一化的话,就可以假设所有权重数值中大约一半为正数,一半为负数。这样,一个听起来蛮合理的想法就是把这些权重的初始值都设为0吧,因为在期望上来说0是最合理的猜测。这个做法错误的!因为如果网络中的每个神经元都计算出同样的输出,然后它们就会在反向传播中计算出同样的梯度,从而进行同样的参数更新。换句话说,如果权重被初始化为同样的值,神经元之间就失去了不对称性的源头。即出现对称权重的现象。

       小随机数初始化。因此,权重初始值要非常接近0又不能等于0。解决方法就是将权重初始化为很小的数值,以此来打破对称性。其思路是:如果神经元刚开始的时候是随机且不相等的,那么它们将计算出不同的更新,并将自身变成整个网络的不同部分。小随机数权重初始化的实现方法是:W = 0.01 * np.random.randn(D,H)。其中randn函数是基于零均值和标准差的一个高斯分布(译者注:国内教程一般习惯称均值参数为期望)来生成随机数的。根据这个式子,每个神经元的权重向量都被初始化为一个随机向量,而这些随机向量又服从一个多变量高斯分布,这样在输入空间中,所有的神经元的指向是随机的。也可以使用均匀分布生成的随机数,但是从实践结果来看,对于算法的结果影响极小。

       警告。并不是小数值一定会得到好的结果。例如,一个神经网络的层中的权重值很小,那么在反向传播的时候就会计算出非常小的梯度(因为梯度与权重值是成比例的)。这就会很大程度上减小反向传播中的“梯度信号”,在深度网络中,就会出现问题。

        使用1/sqrt(n)校准方差。上面做法存在一个问题,随着输入数据量的增长,随机初始化的神经元的输出数据的分布中的方差也在增大。我们可以除以输入数据量的平方根来调整其数值范围,这样神经元输出的方差就归一化到1了。也就是说,建议将神经元的权重向量初始化为:w=np.random.randn(n)/ sqrt(n)。其中n是输入数据的数量。这样就保证了网络中所有神经元起始时有近似同样的输出分布。实践经验证明,这样做可以提高收敛的速度。

上述结论的推导过程如下:假设权重w和输入x之间的内积为s=\sum w_{i}x_{i},这是还没有进行非线性激活函数运算之前的原始数值。我们可以检查s的方差:

神经网路权重初始化方式_第1张图片

神经网路权重初始化方式_第2张图片

        Glorot等在论文Understanding the difficulty of training deep feedforward neural networks中作出了类似的分析。在论文中,作者推荐初始化公式为,其中是在前一层和后一层中单元的个数。这是基于妥协和对反向传播中梯度的分析得出的结论。该主题下最新的一篇论文是:Delving Deep into Rectifiers: Surpassing Human-Level P erformance on ImageNet Classification,作者是He等人。文中给出了一种针对ReLU神经元的特殊初始化,并给出结论:网络中神经元的方差应该是 。代码为w =np.random.randn(n) * sqrt(2.0/n)。这个形式是神经网络算法使用ReLU神经元时的当前最佳推荐。

        稀疏初始化(Sparse initialization)。另一个处理非标定方差的方法是将所有权重矩阵设为0,但是为了打破对称性,每个神经元都同下一层固定数目的神经元随机连接(其权重数值由一个小的高斯分布生成)。一个比较典型的连接数目是10个。

        偏置(biases)的初始化。通常将偏置初始化为0,这是因为随机小数值权重矩阵已经打破了对称性。对于ReLU非线性激活函数,有研究人员喜欢使用如0.01这样的小数值常量作为所有偏置的初始值,这是因为他们认为这样做能让所有的ReLU单元一开始就激活,这样就能保存并传播一些梯度。然而,这样做是不是总是能提高算法性能并不清楚(有时候实验结果反而显示性能更差),所以通常还是使用0来初始化偏置参数。

实践。当前的推荐是使用ReLU激活函数,并且使用w = np.random.randn(n) * sqrt(2.0/n)来进行权重初始化。

       来源:CS231

你可能感兴趣的:(深度学习,神经网络权重初始化)