- 运筹学的第一课:单纯形法
ordinary_brony
研究生课堂学习笔记算法经验分享其他
文章目录导读单纯形法简介单纯形法的步骤简介单纯形法的一些说明决策变量基变量工艺常数右端常数空白处θ\thetaθ检验数把其中的一些部分组合起来约束方程典则形式计算步骤判断条件(一)出基和进基矩阵变换判断条件(二)写出结果总结导读运筹学第一课会给你讲线性规划,也就是从初中以来我们拿多元一次方程组做的“旅游叫车问题”、“投资问题”等等。相信在这个时候,每个人的第一印象是:我感觉我行了。然后老师就开始讲
- 运筹学——线性规划
枠成
运筹学数学建模其他
仅供自学使用,各位观众自行参考Reference:中国大学mooc管理运筹学韩伯棠https://wenku.baidu.com/view/2e7891961a37f111f1855b46.html#https://zhuanlan.zhihu.com/p/104697552目录线性规划步骤:主要应用:单纯性法求目标函数值最小的线性规划问题解的最终结果情况单纯形法的灵敏度分析python求解线性规
- 最优化理论习题(与考试相关)
ˇasushiro
最优化理论笔记
文章目录凸集与凸函数的证明单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法凸集与凸函数的证明凸函数证明就是求HessianHessianHessian矩阵是否为正定矩阵即可单纯形方法对偶问题对偶单纯形法最优性条件使用导数的最优化方法
- 利用单纯形法进行线性规划求解
Metaphysicist.
人工智能算法机器学习最优化原理线性规划matlab
作业要求例16.5:理论推导本作业题的目的分别利用两阶段修正单纯形法与两阶段仿射尺度法对线性规划问题进行求解。两阶段修正单纯形法是一种求解线性规划问题的方法,它主要用于处理约束系数矩阵不包含单位矩阵(没有明显的基本可行解)的情况,也就是无法直接得到初始基可行解的情况。它分为两个阶段:第一阶段:引入人工变量,构造一个只含有人工变量的目标函数,并求其最小值。如果最小值为零,则说明原问题有基可行解,可以
- 线性规划求解
小手指动起来
课程总结
线性规划求解线性规划概念介绍模型建立步骤基本的线性模型例子模型一般形式和标准形式单纯形法、大M法、两阶段法总结线性规划概念介绍线性规划是优化问题的特殊情形,其模型中的目标函数和约束条件均为决策变量的线性函数。模型建立步骤确定决策变量确定目标函数确定约束条件基本的线性模型例子列1【合理下料问题】用长度为500厘米的条材,截成长度为98厘米和78厘米两种毛胚,要求长98厘米的毛胚1000根,78厘米长
- 单纯形法迭代原理及解的判定
思想在拧紧
运筹运筹学单纯形法
写于:2024年1月4日晚修改:基于以下线性规划做分析,maxz=∑j=1ncjxjs.t.{∑j=1naijxj≤bi(i=1,2,…,m)xj≥0(j=1,2,…,n)\begin{aligned}&\max\mathrm{z}=\sum_{j=1}^nc_jx_j\\&\text{s.t.}\left\{\begin{array}{l}\sum_{j=1}^na_{ij}x_j\leqb_
- 【最优化】从图形理解单纯形法——不用单纯形表来解线性规划问题 / 单纯形表的本质与直觉
x66ccff
最优化最优化
66ccff单纯形法是解线性规划问题(LP)的最经典方法,很多人都了解单纯形法是用单纯形表来进行求解的,但是不了解背后的原理。这篇博文介绍单纯型表的直觉。需要的前置知识你需要了解:单纯形法实际上是在“爬山”,从任意一个边界点开始,每次沿着边界走,直到目标值无法继续上升。线性规划由于线性性质,问题对应的单纯形上的边界关于函数值的变化都是单调的。可以引入松弛变量将不等式约束转化为等式,以及所有变量>=
- 算法中的最优化方法与实现(第3课 二次型规划)
komjay
算法中的最优化方法与实现算法
一、学习目标1.了解二次型问题的内容2.了解改进单纯形法解决二次型问题的过程二、二次型问题1.与线性问题相同,二次型问题的描述形式也有两类(type1:一般形式,type2:标准形式):其中H矩阵是二次项的参数矩阵,该项会直接导致整个模型是否存在最优解的问题。下面展示几个特殊二次项的图像:下面左图存在多个极值点,右图则不存在最优值:2.关于将一般形式转化为标准形式,其方式与线性问题一样:三、改进单
- 单纯型法在求逆矩阵时的数值问题
Lins号丹
运筹优化决策#数学建模单纯形法数值问题
求解线性规划的一个经典且成熟的算法是单纯形法,这也是很多线性规划求解器的一个核心算法。其中,在判断基解的出入基操作时,需要计算并判断非基变量的检验数的大小和正负符号,在计算检验数的时候需要通过约束条件,用非基变量的表达式替代基变量。例如这样一般的约束形式:Ax=bAx=bAx=b将xxx拆成基变量和非基变量,写成如下形式:BxB+NxN=bBx_B+Nx_N=bBxB+NxN=b用非基变量表达式表
- 整数规划-割平面法
Kilig*
线性规划数学建模数学建模
整数规划-割平面法割平面法思想Gomory's割平面法原理实例谨以此博客作为学习期间的记录。割平面法思想在之前,梳理了分支定界法的流程:分支定界法除了分支定界法,割平面法也是求解整数规划的另一个利器。我们已经知道,线性规划的可行域是一个凸集,而最优点将会在凸集的某个顶点处取到。而如果凸集的顶点都是整数点,那这样的话只要使用单纯形法即可求得整数最优解。就像下图的凸包所示,在实际情况中,线性规划的可行
- 详解运筹学单纯形法
UCAS_sqs
算法最优化算法
1.在开始之前先抛出几个问题:tips:Q:question,A:answerQ1:单纯形法算法核心思想是什么?Q2:可以用一个实际的场景去解释单纯形法吗?Q3:单纯形法一定在边界处取得最优解吗?Q4:单纯形法通常用于求解什么类型的问题?A1:单纯形法算法核心思想是什么?单纯形法(SimplexMethod)的核心思想是在线性规划问题的可行域的顶点之间进行系统的搜索,以找到使目标函数值最优(最大化
- 凸优化问题求解(2)
碧蓝的天空丶
算法笔记
目录3.内点法3.1线性规划的内点法4.等式约束凸优化问题4.1解空间法4.2对偶方法5.等式约束凸优化问题的Netwon法5.1等式约束凸二次规划的精确解5.2基于局部二次近似的Newton法3.内点法3.1线性规划的内点法内点法的基本思想单纯形法从顶点到顶点搜索最优解-当初始点远离最优解时-需要很长的搜索代价X而内点法在可行域内部进行搜索迭代的算法X设当前点x0是可行集D的一个相对内点-根据优
- 算法中的最优化方法课程复习
Kilig*
算法
算法中的最优化方法课程复习单模函数、拟凸函数、凸函数证明证明一个线性函数与一个凸函数的和也是凸的梯度线性规划标准形式以及如何标准化标准形式常见标准化方法线性化技巧单纯形法二次规划无约束优化Nelder-Mead线搜索FR共轭梯度法例题优化算法的选择、停止准则算法选择停止准则例题单模函数、拟凸函数、凸函数单模函数注意符号是小于等于,可以取等于号。拟凸函数凸函数例子1根据上面的性质判断,这个函数同时是
- 幺模矩阵-线性规划的整数解特性
Kilig*
数学建模线性规划矩阵线性代数
百度百科:幺模矩阵在线性规划问题中,如果A为幺模矩阵,那么该问题具有最优整数解特性。也就是说使用单纯形法进行求解,得到的解即为整数解。无需再特定使用整数规划方法。mincTxs.t.{Ax≥bx≥0\begin{align*}min\quad&\mathbf{c}^T\mathbf{x}\\s.t.\quad&\begin{cases}\mathbf{Ax}\geq\mathbf{b}\\\mat
- Google OR-Tools(二) 线性优化Linear Optimization
11c170319da1
本文参考GoogleOR-Tools官网文档介绍OR-Tools的使用方法。1线性规划问题线性规划是优化问题里最简单的一种形式,需要极大化或极小化的目标函数是线性的,而约束条件由一组线性等式或不等式组成。很多复杂的非线性规划问题都会需要将其装换成线性规划问题来求解。求解线性规划问题最常用的算法是单纯形法(包括了单纯形表、修正单纯形法、对偶单纯形法等),除此之外还有内点法、灵敏度分析等算法。线性规划
- 【智能优化算法】基于混沌策略和单纯形法改进的鲸鱼优化算法求解单目标优化问题(CSWOA)附matlab代码
matlab科研助手
1简介为解决鲸鱼优化算法收敛速度慢和寻优精度低等问题,提出了一种基于混沌策略和单纯形法优化的鲸鱼优化算法(whaleoptimizationalgorithmbasedonchaosoptimizationandsimplexoptimization,CSWOA).首先,采用混沌反向学习策略初始化鲸鱼种群个体,降低随机化的原始种群对算法收敛的影响;然后,引入一种自适应权重策略,平衡算法的全局寻优和
- 10分钟掌握对偶单纯形法
咖瑞芝
运筹学矩阵算法动态规划
只听名字的话会感觉对偶单纯形法和对偶问题关系很大,其实不然(想要了解对偶问题的话可以看我之前的文章)。对偶单纯形法在我看来和大M法以及两阶段法很像,都是用来补充纯粹的单纯形法无法解决特殊问题的缺陷。而且对偶单纯形法更加“强大”,因为它可以在等式右端(b)为负值时直接求解,这也是选择使用它的大多数场景。接下来以下图中题为例直接进行讲解:设:对偶法=对偶单纯形法第一步:与单纯形法一样,对偶法第一步仍然
- 10分钟也不一定学会的灵敏度分析
咖瑞芝
运筹学线性代数算法线性规划
灵敏度分析可谓是线性规划中的重难点了,不仅将之前的知识汇总起来,更是考试必考的大题(出题人基本都是先让用单纯形法解出线性规划问题后,紧接着剩下的2,3小问均是灵敏度分析解题)。博主写这一篇博文也是走走停停耽误了很久,前前后后复习了多次QaQ。接下来我们还是提出几个问题:1.灵敏度分析对应的是怎样的问题?2.灵敏度分析法解决问题有怎样的优点?不用该方法还有其他方法吗?3.灵敏度分析类的问题有哪几类?
- Nelder-Mead算法(智能优化之下山单纯形法)
想不到名字222
算法python
Nelder-Mead算法是一种求多元函数局部最小值的算法,其优点是不需要函数可导并能较快收敛到局部最小值。该算法需要提供函数自变量空间中的一个初始点x1,算法从该点出发寻找局部最小值Nelder-Mead方法也称下山单纯形法,是由JohnNelder&RogerMead于1965年提出的一种求解数值优化问题的启发式搜索给定n+1个顶点(i=1,2...,n+1),这些点对应的函数值为开始按以下算
- 【管理运筹学】运筹学“背诵手册”(一) | 线性规划问题与单纯形法
Douglassssssss
#运筹学运筹学考研“背诵手册”线性规划单纯形法
引言同数学一样,运筹学尽管大量的是计算题,但这些算法步骤及思路,还有涉及到的知识点如果不去整理和记忆,很难在短时间内正确求解出考题。比如指派问题的匈牙利法、排队论公式、运输问题的表上作业法等等,都是需要记忆的部分。下面就把个人认为容易遗忘的点整理起来,方便日后随时查阅。一、线性规划问题与单纯形法线性规划模型三个特点:1.有决策变量,一般非负;2.存在约束条件,用线性等式或不等式来表示;3.有目标,
- 当线性规划与算法相遇:揭秘单纯形法(Simplex)的独特魅力
散一世繁华,颠半世琉璃
数学算法
传统的解决线性规划问题的方法是图形法、代数法求解,但是图形法解题有极大的局限性,因为一旦变量超过3个,基本上就无法通过图形解决,而代数法虽然可以解题,但对于复杂的问题可能效果较差甚至无法求解!相比图形法和代数法,单纯形法解决线性规划问题具有以下优势:理论基础强:单纯形法是基于线性规划的基本理论,通过系统的迭代过程逐步逼近最优解。它是一种可行的、确定性的算法,能够找到问题的最优解或者确定问题是无界或
- 示例与原理详解 二十世纪最伟大的十大算法 00记 —— 目录
Eloudy
algorithm
一、1946蒙特卡洛方法[1946:JohnvonNeumann,StanUlam,andNickMetropolis,allattheLosAlamosScientificLaboratory,cookuptheMetropolisalgorithm,alsoknownastheMonteCarlomethod.]二、1947单纯形法[1947:GeorgeDantzig,attheRANDCo
- 数学建模 | MATLAB学习 | 非线性规划
Shannon333
数学建模MATLAB
如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。一般说来,解非线性规划要比解线性规划问题困难得多。而且,也不像线性规划有单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都有自己特定的适用范围。非线性规格的MATLAB解法Matlab中的命令是[x,fval]=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,opt
- 线性规划之单纯形法
学无止境jl
算法算法线性规划
一、前言迭代改进思想是算法设计中常用的求解最优问题的方法,一般思路是:任取一个可行解判断可行解是否是最优的,若是,算法结束若不是,找到一个比当前可行解更好的可行解,并替代它,继续步骤2事实上,判断可行解的过程就能找到(或不能)一个更好的可行解。线性规划问题,是在约束条件下求最大值或最小值的问题。例如显然z=3x+5y的x越大越好,y越大越好。x=3,y=1得zmax=14而解线性规划问题最好的方法
- 线性规划及其对偶问题(单纯形法|人工变量|对偶理论)
bujbujbiu
线性规划单纯形法运筹优化
文章目录(一)线性规划1.化标准型2.图解法3.单纯形法原理3.1最优判断(检验数)3.2单纯形法步骤4.单纯形法的进一步讨论4.1大M法4.2两阶段法4.3退化解(二)对偶问题1.线性规划的对偶问题2.单纯形法矩阵描述3.线性规划对偶理论3.1对称性3.2弱对偶性3.3最优性定理3.4对偶定理(强对偶性)3.5互补松弛性4.影子价格5.对偶单纯形法5.1对偶单纯形法步骤5.2对偶单纯形法的特点6
- 【算法+工程】单纯形法.md
longgb246
一、优化问题标准型1.1问题例子某工厂在计划期内要安排生产Ⅰ、Ⅱ两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如表1-1所示。image.png该工厂每生产一件产品Ⅰ可获利2元,每生产一件产品Ⅱ可获利3元,问应如何安排计划使该工厂获利最多?1.2数学形式上述问题可以用以下形式表示,其中$x_{1}$、$x_{2}$分别表示生产Ⅰ、Ⅱ产品的个数:目标函数:$$max(z=2x_{
- 【最优化笔记4】线性规划--对偶理论
飞今天也很开心
最优化学习笔记算法
对偶问题(必考点),要会把原问题的对偶问题写出来,知道对偶定理,会对偶单纯形法。每一个线性规划问题,都有一个被称为对偶的线性规划问题与它相对应,二者可以看做是对同一个问题从不同的角度所进行的分析与研究。文章目录1.对偶线性规划问题1.1对称形式的对偶问题1.2非对称形式的对偶问题2.对偶定理2.1引理1(弱对偶定理)2.2引理1的推论2.3线性规划的对偶定理(强对偶定理)3.互补松弛定理3.1非对
- 线性规划模型-应用篇
我在开水团做运筹
#运筹优化运筹优化线性规划工程应用
文章目录模型特点使用技巧工具包和求解器模型线性化应用实例经验总结模型特点上一篇中,详细阐述了线性规划问题和单纯形法的算法原理,本文将着重介绍线性模型在工业场景中的应用。首先需要说清楚的是,为什么线性模型深受研发人员青睐。从已有的经验来看,主要原因有三个:(1)线性规划的局部最优解就是全局最优解;(2)计算速度快;(3)研发成本低。为了说明第一点,需要先引入一个概念:凸函数。凸函数的定义为:设函数f
- 线性规划和单纯形法-原理篇
我在开水团做运筹
#运筹优化运筹优化单纯形法线性规划
文章目录引言线性规划标准型问题特点单纯形法引言很多运筹学的教材都是从线性规划开始的,我平时做算法策略的落地应用时也研发了一部分基于线性规划的技术方案。可以说,如果搞不懂线性规划,很难成为一名优秀的运筹优化算法工程师。但是我在体系化学习时,却先在其他地方转了一大圈,才来到这里。主要原因是,这线性规划的原理着实有点难,之前看了很多遍,总有种好像懂了但又没完全懂的挫败感。痛定思痛下终于决定,还是从最简单
- 数学建模(五)非线性规划
向岸看
数学建模数学建模
课程推荐:13非线性规划算法在数学建模中的应用与编程实现_哔哩哔哩_bilibili一、非线性规划模型如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。一般说来,解非线性规划要比解线性规划问题困难得多。而且,也不像线性规划有单纯形法这一通用方法,非线性规划目前还没有适于各种问题的一般算法,各个方法都有自己特定的适用范围。1.1案例投资决策问题:某企业有n个项目可供选择投资,
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分