https://leetcode.com/problems/palindrome-partitioning/
Given a string s, partition s such that every substring of the partition is a palindrome.
Return all possible palindrome partitioning of s.
For example, given s =
%26quot;aab%26quot;
,
Return[ [%26quot;aa%26quot;,%26quot;b%26quot;], [%26quot;a%26quot;,%26quot;a%26quot;,%26quot;b%26quot;] ]
/**
* author : Jianxin Zhou
* email:zhoujx0219@163.com
*
* 该题dfs函数原型如下:
* void partitionHelper(const string %26amp;s, vector%26lt;vector%26lt;string%26gt;%26gt; %26amp;result, vector%26lt;string%26gt; %26amp;path, int pos)
*
* 以aaba举例。
* 1. 首先a为回文,然后对aba进行dfs
* 2. 之后回溯到a时,以aa为回文,然后对ba做dfs
* 3. 回溯到aa,试图以aab为回文,失败;试图以aaba为回文失败;结束。
*
* 注意:如果能顺利的找到一组回文,那么pos最终会等于s.size(),此时可以push到result。
* 如果找不到,例如之前的aaba不是回文,那么就会直接退出循环,没有机会执行下一步递归,也就没有pos等于s.size了。
*
* 实际上,此类题与真正的dfs的差别在于,dfs在回溯时,不会进行剪枝操作。而此类题,由于需要求出所有方案,所以需要剪枝。
*
*/
class Solution {
public:
vector%26lt;vector%26lt;string%26gt;%26gt; partition(string s) {
vector%26lt;vector%26lt;string%26gt;%26gt; result;
vector%26lt;string%26gt; path;
partitionHelper(s, result, path, 0);
return result;
}
private:
void partitionHelper(const string %26amp;s, vector%26lt;vector%26lt;string%26gt;%26gt; %26amp;result, vector%26lt;string%26gt; %26amp;path, int pos) {
// base case
if (pos == s.size()) {
result.push_back(path);
return;
}
for (int i = pos; i %26lt; s.size(); i++) {
if (isPalindrome(s, pos, i)) {
path.push_back(s.substr(pos, i - pos + 1));
partitionHelper(s, result, path, i + 1);
path.pop_back();
}
}
}
bool isPalindrome(const string %26amp;s, int start, int end) {
while (start %26lt; end) {
if (s[start] == s[end]) {
start++;
end--;
} else {
break;
}
}
return start %26gt;= end;
}
};
https://leetcode.com/problems/permutations/
Given a collection of numbers, return all possible permutations.
For example,
[1,2,3]
have the following permutations:[1,2,3]
,[1,3,2]
,[2,1,3]
,[2,3,1]
,[3,1,2]
, and[3,2,1]
.
具体可参加我之前写的文章:[LintCode] Permutations
/**
* 思路:dfs。
*
* 以123举例,
* 1. 首先以1作为head,然后对23做dfs
* 2. 回溯到1, 以2作为head,对13做dfs
* 3. 最后回溯到2,以3作为head,对12做dfs
*
* 注意:例如以2为head,对其余元素做dfs时,那么2不能再取,因此在进行下一轮dfs时,需要标记2为以访问过
*
*/
class Solution {
public:
vector%26lt;vector%26lt;int%26gt;%26gt; permute(vector%26lt;int%26gt;%26amp; nums) {
vector%26lt;vector%26lt;int%26gt;%26gt; result;
vector%26lt;int%26gt; path;
bool visited[nums.size()];
for(int i = 0; i %26lt; nums.size(); i++) {
visited[i] = false;
}
sort(nums.begin(), nums.end());
dfs(nums, result, path, visited);
return result;
}
private:
void dfs(const vector%26lt;int%26gt; %26amp;nums, vector%26lt;vector%26lt;int%26gt;%26gt; %26amp;result, vector%26lt;int%26gt; %26amp;path, bool visited[]) {
// base case
if (path.size() == nums.size()) {
result.push_back(path);
return;
}
for (int i = 0; i %26lt; nums.size(); i++) {
if (visited[i] == false) {
path.push_back(nums[i]);
visited[i] = true;
dfs(nums, result, path, visited);
path.pop_back();
visited[i] = false;
}
}
}
};
https://leetcode.com/problems/permutations-ii/
Given a collection of numbers that might contain duplicates, return all possible unique permutations.
For example,
[1,1,2]
have the following unique permutations:[1,1,2]
,[1,2,1]
, and[2,1,1]
.
要点在于保证相同的数不在同一位置出现两次以上,可以参见我写的这篇文章:[LintCode] Permutations II
class Solution {
public:
/**
* @param nums: A list of integers.
* @return: A list of unique permutations.
*/
vector%26lt;vector%26lt;int%26gt; %26gt; permuteUnique(vector%26lt;int%26gt; %26amp;nums) {
// write your code here
vector%26lt;vector%26lt;int%26gt;%26gt; paths;
if (nums.empty()) {
return paths;
}
sort(nums.begin(), nums.end());
bool *visited = new bool[nums.size()]();
vector%26lt;int%26gt; path;
permuteUniqueHelper(nums, visited, path, paths);
return paths;
}
private:
void permuteUniqueHelper(const vector%26lt;int%26gt; %26amp;nums,
bool visited[],
vector%26lt;int%26gt; %26amp;path,
vector%26lt;vector%26lt;int%26gt;%26gt; %26amp;paths) {
if (path.size() == nums.size()) {
paths.push_back(path);
return;
}
for (int ix = 0; ix %26lt; nums.size(); ix++) {
if (visited[ix] == true || ix %26gt; 0 %26amp;%26amp; nums[ix - 1] == nums[ix] %26amp;%26amp; visited[ix - 1] == false) {
continue;
}
visited[ix] = true;
path.push_back(nums[ix]);
permuteUniqueHelper(nums, visited, path, paths);
visited[ix] = false;
path.pop_back();
}
}
};
https://leetcode.com/problems/subsets/
Given a set of distinct integers, nums, return all possible subsets.
Note:
- Elements in a subset must be in non-descending order.
- The solution set must not contain duplicate subsets.
For example,
If nums =[1,2,3]
, a solution is:[ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]
/**
* 思路:找方案,一般都是使用搜索。
*
* 以123为例,在递归还没有开始前,先把空集push到result中,之后:
* 1. 以1位head,对23做dfs,所以pos需要加1,用于分支限界(1 12 13 123)
* 2. 回溯到1,以2为head,对3做dfs (2 23)
* 3. 回溯到3,以3为head,之后循环结束。 (3)
*
*
*/
class Solution {
public:
vector%26lt;vector%26lt;int%26gt;%26gt; subsets(vector%26lt;int%26gt;%26amp; nums) {
// ensure that elements in a subset must be in non-descending order.
sort(nums.begin(), nums.end());
vector%26lt;vector%26lt;int%26gt;%26gt; res;
vector%26lt;int%26gt; path;
dfs(nums, res, path, 0);
return res;
}
private:
void dfs(const vector%26lt;int%26gt; %26amp;nums, vector%26lt;vector%26lt;int%26gt;%26gt; %26amp;res, vector%26lt;int%26gt; %26amp;path, int pos) {
res.push_back(path);
for (int i = pos; i %26lt; nums.size(); i++) {
path.push_back(nums[i]);
dfs(nums, res, path, i + 1);
path.pop_back();
}
}
};
https://leetcode.com/problems/subsets-ii/
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
- Elements in a subset must be in non-descending order.
- The solution set must not contain duplicate subsets.
For example,
If nums =[1,2,2]
, a solution is:[ [2], [1], [1,2,2], [2,2], [1,2], [] ]
同一位置上,前面取过的数,后面就不要再重复取了,当然当i = pos时,这个数必然是第一次取。
class Solution {
public:
vector%26lt;vector%26lt;int%26gt;%26gt; subsetsWithDup(vector%26lt;int%26gt; %26amp;nums) {
sort(nums.begin(), nums.end());
vector%26lt;vector%26lt;int%26gt;%26gt; res;
vector%26lt;int%26gt; path;
dfs(nums, res, path, 0);
return res;
}
private:
void dfs(const vector%26lt;int%26gt; %26amp;nums, vector%26lt;vector%26lt;int%26gt;%26gt; %26amp;res, vector%26lt;int%26gt; %26amp;path, int pos) {
res.push_back(path);
for (int i = pos; i %26lt; nums.size(); i++) {
if (i != pos %26amp;%26amp; nums[i] == nums[i - 1]) {
continue;
}
path.push_back(nums[i]);
dfs(nums, res, path, i + 1);
path.pop_back();
}
}
};
(未完待续)