resnet+tensorflow1.14+遥感图片二分类

import tensorflow as tf
 
def _resnet_block_v1(inputs, filters, stride, projection, stage, blockname, TRAINING):
    # defining name basis
    conv_name_base = 'res' + str(stage) + blockname + '_branch'
    bn_name_base = 'bn' + str(stage) + blockname + '_branch'
 
    with tf.name_scope("conv_block_stage" + str(stage)):
        if projection:
            shortcut = tf.layers.conv2d(inputs, filters, (1,1), 
                                        strides=(stride, stride), 
                                        name=conv_name_base + '1', 
                                        kernel_initializer=tf.contrib.layers.variance_scaling_initializer(), 
                                        reuse=tf.AUTO_REUSE, padding='same', 
                                        data_format='channels_last')
            shortcut = tf.layers.batch_normalization(shortcut, axis=-1, name=bn_name_base + '1', 
                                                     training=TRAINING, reuse=tf.AUTO_REUSE)
        else:
            shortcut = inputs
 
        outputs = tf.layers.conv2d(inputs, filters,
                                  kernel_size=(3, 3),
                                  strides=(stride, stride), 
                                  kernel_initializer=tf.contrib.layers.variance_scaling_initializer(), 
                                  name=conv_name_base+'2a', reuse=tf.AUTO_REUSE, padding='same', 
                                  data_format='channels_last')
        outputs = tf.layers.batch_normalization(outputs, axis=-1, name=bn_name_base+'2a', 
                                                training=TRAINING, reuse=tf.AUTO_REUSE)
        outputs = tf.nn.relu(outputs)
	
        outputs = tf.layers.conv2d(outputs, filters,
                                  kernel_size=(3, 3),
                                  strides=(1, 1), 
                                  kernel_initializer=tf.contrib.layers.variance_scaling_initializer(), 
                                  name=conv_name_base+'2b', reuse=tf.AUTO_REUSE, padding='same', 
                                  data_format='channels_last')
        outputs = tf.layers.batch_normalization(outputs, axis=-1, name=bn_name_base+'2b', 
                                                training=TRAINING, reuse=tf.AUTO_REUSE)
        outputs = tf.add(shortcut, outputs)
        outputs = tf.nn.relu(outputs)								  
    return outputs
	
def _resnet_block_v2(inputs, filters, stride, projection, stage, blockname, TRAINING):
    # defining name basis
    conv_name_base = 'res' + str(stage) + blockname + '_branch'
    bn_name_base = 'bn' + str(stage) + blockname + '_branch'
 
    with tf.name_scope("conv_block_stage" + str(stage)):
        shortcut = inputs
        outputs = tf.layers.batch_normalization(inputs, axis=-1, name=bn_name_base+'2a', 
                                                training=TRAINING, reuse=tf.AUTO_REUSE)
        outputs = tf.nn.relu(outputs)		
        if projection:
            shortcut = tf.layers.conv2d(outputs, filters, (1,1), 
                                        strides=(stride, stride), 
                                        name=conv_name_base + '1', 
                                        kernel_initializer=tf.contrib.layers.variance_scaling_initializer(), 
                                        reuse=tf.AUTO_REUSE, padding='same', 
                                        data_format='channels_last')
            shortcut = tf.layers.batch_normalization(shortcut, axis=-1, name=bn_name_base + '1', 
                                                     training=TRAINING, reuse=tf.AUTO_REUSE)
								
        outputs = tf.layers.conv2d(outputs, filters,
                                  kernel_size=(3, 3),
                                  strides=(stride, stride), 
                                  kernel_initializer=tf.contrib.layers.variance_scaling_initializer(), 
                                  name=conv_name_base+'2a', reuse=tf.AUTO_REUSE, padding='same', 
                                  data_format='channels_last')
        
        outputs = tf.layers.batch_normalization(outputs, axis=-1, name=bn_name_base+'2b', 
                                                training=TRAINING, reuse=tf.AUTO_REUSE)
        outputs = tf.nn.relu(outputs)
        outputs = tf.layers.conv2d(outputs, filters,
                                  kernel_size=(3, 3),
                                  strides=(1, 1),
                                  kernel_initializer=tf.contrib.layers.variance_scaling_initializer(),
                                  name=conv_name_base+'2b', reuse=tf.AUTO_REUSE, padding='same', 
                                  data_format='channels_last')
 
        outputs = tf.add(shortcut, outputs)
    return outputs
 
def inference(images, training, filters, n, ver):
    """Construct the resnet model
    Args:
      images: [batch*channel*height*width]
	  training: boolean
	  filters: integer, the filters of the first resnet stage, the next stage will have filters*2
	  n: integer, how many resnet blocks in each stage, the total layers number is 6n+2
	  ver: integer, can be 1 or 2, for resnet v1 or v2
    Returns:
      Tensor, model inference output
    """
    #Layer1 is a 3*3 conv layer, input channels are 3, output channels are 16
    inputs = tf.layers.conv2d(images, filters=16, kernel_size=(3, 3), strides=(1, 1), 
                              name='conv1', reuse=tf.AUTO_REUSE, padding='same', data_format='channels_last')
 
    #no need to batch normal and activate for version 2 resnet.
    if ver==1:
        inputs = tf.layers.batch_normalization(inputs, axis=-1, name='bn_conv1',
                                               training=training, reuse=tf.AUTO_REUSE)
        inputs = tf.nn.relu(inputs)
 
    for stage in range(3):
        stage_filter = filters*(2**stage)
        for i in range(n):
            stride = 1
            projection = False
            if i==0 and stage>0:
                stride = 2
                projection = True
            if ver==1:
                inputs = _resnet_block_v1(inputs, stage_filter, stride, projection, 
				                          stage, blockname=str(i), TRAINING=training)
            else:
                inputs = _resnet_block_v2(inputs, stage_filter, stride, projection, 
				                          stage, blockname=str(i), TRAINING=training)
 
    #only need for version 2 resnet.
    if ver==2:
        inputs = tf.layers.batch_normalization(inputs, axis=-1, name='pre_activation_final_norm', 
                                               training=training, reuse=tf.AUTO_REUSE)
        inputs = tf.nn.relu(inputs) 
 
    axes = [1, 2]
    inputs = tf.reduce_mean(inputs, axes, keep_dims=True)
    inputs = tf.identity(inputs, 'final_reduce_mean')
 
    inputs = tf.reshape(inputs, [-1, filters*(2**2)])
    inputs = tf.layers.dense(inputs=inputs, units=2, name='dense1', reuse=tf.AUTO_REUSE)
    return inputs
import os
from cv2 import cv2 as cv
import tensorflow as tf 
import matplotlib.pyplot as plt
import numpy as np
import threading
import resnet_model
os.environ["TF_CPP_MIN_LOG_LEVEL"]="2"

def read_tfRecord(file_tfRecord):     #输入是.tfrecords文件地址
    queue = tf.train.string_input_producer([file_tfRecord])
    reader = tf.TFRecordReader()
    _,serialized_example = reader.read(queue)
    features = tf.parse_single_example(
            serialized_example,
            features={
     
          'image_raw':tf.FixedLenFeature([], tf.string),   
          'label':tf.FixedLenFeature([], tf.int64)
                    }
            )
    image = tf.decode_raw(features['image_raw'],tf.uint8)
    image = tf.reshape(image,[256*256*3])
    image = tf.cast(image, tf.float32)
    image = tf.cast(image, tf.float32) * (1./ 255) - 0.5
   # image = tf.image.per_image_standardization(image)
    label = tf.cast(features['label'], tf.int64)
    one_hot_labels = tf.one_hot(indices=label,depth=2, on_value=1, off_value=0, axis=-1, dtype=tf.int32, name="one-hot")
    one_hot_labels=tf.cast(one_hot_labels,tf.float32)
    return image,one_hot_labels


if __name__ == '__main__':
    
    outputdir1 = "/root/UCMerced1"
    outputdir2 = "/root/UCMerced2" 
    traindata1,trainlabel1 = read_tfRecord(outputdir1+".tfrecords")
    traindata2,trainlabel2 = read_tfRecord(outputdir2+".tfrecords")
    image_batch1,label_batch1 = tf.train.shuffle_batch([traindata1,trainlabel1],
                                            batch_size=20,capacity=200,min_after_dequeue = 10) 
    image_batch2,label_batch2 = tf.train.shuffle_batch([traindata2,trainlabel2],
                                            batch_size=20,capacity=200,min_after_dequeue = 10) 
                                        

with tf.name_scope("Input_layer"):
    x=tf.placeholder("float",[None,256*256*3],name="x")
    x_image=tf.reshape(x,[-1,256,256,3])

with tf.name_scope("training_bool"):
    training=tf.placeholder(tf.bool)


filters = 16  #the first resnet block filter number
n = 5  #the basic resnet block number, total network layers are 6n+2
ver = 2   #the resnet block version

inputs=resnet_model.inference(x_image,training, filters, n, ver)

y_predict=tf.nn.softmax(inputs)


with tf.name_scope("optimizer"):
    y_label = tf.placeholder("float",[None, 2])
#cross_entropy = -tf.reduce_sum(y_*tf.log(y))
    cross_entropy= -tf.reduce_mean(y_label * tf.log(tf.clip_by_value(y_predict,1e-10,1.0)))
  
    #loss_function=tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=y_predict,labels=y_label))
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
        optimizer=tf.train.AdadeltaOptimizer(learning_rate=0.1).minimize(cross_entropy)

with tf.name_scope("evaluate_model"):
    correct_prediction=tf.equal(tf.arg_max(y_label,1),tf.arg_max(y_predict,1))
    accuracy=tf.reduce_mean(tf.cast(correct_prediction,"float"))
    tf.summary.scalar('accuracy', accuracy)
#train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
saver = tf.train.Saver(max_to_keep=5)
merged = tf.summary.merge_all()
Epochs=20
Epochs=30
trainEpochs=Epochs-1
batchSize=20
loss_list=[]
epoch_list=[]
accuracy_list=[]
sess=tf.Session()
writer = tf.summary.FileWriter('/root/qzlogs',tf.get_default_graph())

coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess,coord = coord)
sess.run(tf.global_variables_initializer())
batch_x2,batch_y2=sess.run([image_batch2,label_batch2])
try:
    while not coord.should_stop():

        for epoch in range(10000):
            for i in range(8):
                batch_x,batch_y=sess.run([image_batch1,label_batch1])
                summary,_=sess.run([merged,optimizer],feed_dict={
     x:batch_x,y_label:batch_y,training:True})
            writer.add_summary(summary,epoch)
            loss,acc=sess.run([cross_entropy,accuracy],feed_dict={
     x:batch_x2,y_label:batch_y2,training:False})
            epoch_list.append(epoch)
            loss_list.append(loss)
            accuracy_list.append(acc)
            print("-----------------------------------------------------------")
            print("Train Epoch:","%02d"%(epoch+1),"Loss=","{:.9f}".format(loss),"Accuracy=",acc)
            saver.save(sess, "model_conv/my-model", global_step=epoch)
            print ("save the model")
            print("------------------------------------------------------------")
            if epoch>=trainEpochs:
                coord.request_stop()


except tf.errors.OutOfRangeError:  
    print ('Done training -- epoch limit reached')  
finally:  
            # When done, ask the threads to stop. 请求该线程停止  
    coord.request_stop()  
            # And wait for them to actually do it. 等待被指定的线程终止  
 
    coord.join(threads)



resnet+tensorflow1.14+遥感图片二分类_第1张图片简要实现了如何用resnet编写二分类,环境是tensorflow1.14, 最后准确率高达1,不知道是不是过拟合了。
参考博客代码

你可能感兴趣的:(神经网络,tensorflow,深度学习)