- 使用scorecardpy库计算woe分箱和iv值
亲持红叶
机器学习风控相关算法人工智能机器学习
woe分箱_iv值计算基于scorecardpy库,乳腺癌数据集importpandasaspdimportnumpyasnpfromsklearn.datasetsimportload_breast_cancerimportscorecardpyasscfromtqdmimportnotebookcancer=load_breast_cancer()df=pd.DataFrame(cancer.
- Python制作BI图表(Temps)
魔弓紫喵
Python碎片python开发语言
用Python制作BI(BusinessIntelligence)图表时,你可以使用多种数据可视化库来实现。下面是一个详细的教程,包括使用matplotlib、seaborn和plotly来创建不同类型的BI图表的示例代码。步骤1:安装必要的库确保你的系统已经安装了以下库:pandas:用于数据处理和准备。matplotlib:一个常用的绘图库,用于创建各种静态图表。seaborn:基于Matpl
- 处理数据,可视化
李渊_
python后端pandas
这篇内容就是极度简单简称极简,适合新手使用Django和Matplotlib还有pandas库首先衔接我前几篇的内容,就是图片和信息已经获取了,现在需要处理了因为我再获取数据的时候碰到一个问题就是使用selenium库获取不了空值数据,所以我就以字符串“空”为内容,插入到了表格中首先第一步就是处理表单中单一列表中为空值的行,我这边选择的是全部删除importpandasaspd#读取Excel文件
- Python酷库之旅-第三方库Pandas(181)
神奇夜光杯
pythonpandas开发语言人工智能标准库及第三方库excel学习与成长
目录一、用法精讲836、pandas.api.types.is_file_like函数836-1、语法836-2、参数836-3、功能836-4、返回值836-5、说明836-6、用法836-6-1、数据准备836-6-2、代码示例836-6-3、结果输出837、pandas.api.types.is_list_like函数837-1、语法837-2、参数837-3、功能837-4、返回值837-
- python爬取高德地图道路交通状态数据代码
weixin_17839606517
可视化python开发语言
"""author:17839606517"""importdatetimeimportdatetimeimportosimportcsvfromcodecsimportStreamReaderWriterimportnumpyasnpimportrequestsimportpandasaspdimportjsonimportcodecsimporttimedefaaa():#初始API的URL#
- 百度指数+selenium+request+比特指纹浏览器+pywebview+pandas+flask过程性
万山y
pythonselenium爬虫flaskpandas
1.cookies和headrs问题使用selenium获得的cookies测试没有问题,但是获得的heards头不可以使用,经过测试比较需要添加或者修改几项重点的heards为{'Cipher-Text':'1704885072633_1704970047346_SlMkwPX0ZnotTaSrpOEx50xhLlPT5iMH867nxTtYuapcdPhsh2d2ooVE2F+RSm+yhIF
- python中drop用法 去重_如何使用drop_duplicates进行简单去重(入门篇)
weixin_39991055
python中drop用法去重
什么是去重呢?简单来说,数据去重指的是删除重复数据。在一个数字文件集合中,找出重复的数据并将其删除,只保存唯一的数据单元。在我们的数据预处理过程中,这是一项我们经常需要进行的操作。去重有哪些好处?节省存储空间提升写入性能提高模型精度今天我们就来简单介绍一下,在pandas中如何使用drop_duplicates进行去重。一、函数体及主要参数函数体:df.drop_duplicates(subset
- Pandas数据预处理——drop_duplicates()函数
Vous oublie@
python学习数据分析pythonpandas数据分析
Pandas是一个强大的数据分析工具,可以用于数据预处理、数据清洗、数据分析和可视化等多个领域。在数据预处理中,数据去重是非常重要的一个步骤。Pandas提供了drop_duplicates()函数来实现数据去重,可以根据指定的列或行进行去重操作。下面是使用drop_duplicates()函数实现数据去重的示例代码:importpandasaspd#读取csv文件df=pd.read_csv('
- 【python】成功解决AttributeError: ‘Tuple’ object has no attribute ‘shape’
云天徽上
python运行报错解决记录python开发语言pandas机器学习numpysklearn
成功解决AttributeError:‘Tuple’对象没有属性‘shape’在Python的编程中,尤其是当我们使用如NumPy或Pandas等科学计算和数据处理库时,经常会遇到各种属性错误(AttributeError)。其中,“AttributeError:‘Tuple’对象没有属性‘shape’”是一个常见的错误,它通常意味着我们试图在一个元组(Tuple)对象上调用一个它并不拥有的方法或
- python中水量_python 画降水量色斑图问题
张少壮
python中水量
#引用部分importnumpyasnpimportpandasaspdfromscipy.interpolateimportRbf#径向基函数:将站点信息插到格点上用于绘制等值线importmatplotlib.pyplotaspltimportmatplotlib.colorsascolorsimportmatplotlibasmplimportcartopy.crsasccrsimportc
- 【数据分析(二)】初探 Pandas
dandellion_
Python语法数据分析pandas数据挖掘
目录引言1.基本数据结构1.1.Series的初始化和简单操作1.2.DataFrame的初始化和简单操作1.2.1.初始化与持久化1.2.2.读取查看1.2.3.行操作1.2.4.列操作1.2.5.选中筛查2.数据预处理2.0.生成样例表2.1.缺失值处理2.2.类型转换和排序2.3.统计分析3.数据透视3.0.生成样例表3.1.生成透视表4.数据重塑4.1.层次化索引4.1.1.双层索引的Se
- Python自动化办公
测试开发漫漫成长路
python办公自动化自动化
一、引言以下是一个完整的Python自动化办公框架的目录结构和详细的解释。该框架将结合多种工具和技术,涵盖从数据处理到任务调度、自动化邮件发送、网页抓取等常见办公自动化任务。二、常用框架与工具pandas:使用场景:数据处理与分析描述:pandas是一个强大的数据处理库,适用于读取、清理、分析、操作Excel、CSV等表格数据。它提供了DataFrame数据结构,便于处理复杂的数据任务。典型应用:
- 【Pandas】pandas Series apply
liuweidong0802
PandasSeriespandas
Pandas2.2SeriesFunctionapplication,GroupBy&window方法描述Series.apply()用于将一个函数应用到Series的每个元素或整个Seriespandas.Series.applypandas.Series.apply是Pandas库中Series对象的一个方法,用于将一个函数应用到Series的每个元素或整个Series。它提供了极大的灵活性,
- 【Pandas】pandas Series dot
liuweidong0802
PandasSeriespandas前端人工智能
Pandas2.2SeriesBinaryoperatorfunctions方法描述Series.add()用于对两个Series进行逐元素加法运算Series.sub()用于对两个Series进行逐元素减法运算Series.mul()用于对两个Series进行逐元素乘法运算Series.div()用于对两个Series进行逐元素除法运算Series.truediv()用于执行真除法(即浮点数除法
- Python知识超级汇总
༺ཌༀ傲世万物ༀད༻
pythonpython开发语言
Python知识超级汇总文章目录Python知识超级汇总一、引言二、Python基础(一)安装与环境配置(二)基本语法(三)流程控制(四)数据结构三、Python高级特性(一)函数(二)迭代器与生成器(三)装饰器(四)面向对象编程(OOP)(五)异常处理(六)模块与包四、Python常用库与框架(一)NumPy(二)pandas(三)Matplotlib(四)Flask(五)Django五、总结一
- 14-美妆数据分析
william_liu1
数据分析数据分析数据挖掘
前言美妆数据分析可以帮助企业更好地理解市场趋势、客户偏好和产品表现importpandasaspdimportnumpyasnp一、数据清洗data=pd.read_csv(r'C:\Users\B\Desktop\美妆数据.csv',encoding='gbk')data.head()data.info()data=data.drop_duplicates(inplace=False)data.
- Python 潮流周刊#69:是时候停止使用 Python 3.8了(摘要)
python
本周刊由Python猫出品,精心筛选国内外的250+信息源,为你挑选最值得分享的文章、教程、开源项目、软件工具、播客和视频、热门话题等内容。愿景:帮助所有读者精进Python技术,并增长职业和副业的收入。分享了12篇文章,12个开源项目,全文2100字。以下是本期摘要:文章&教程①是时候停止使用Python3.8了②多版本Python库的思考③为什么我要从Pandas切换用Polars?④我们如何
- Python VS Code报错ModuleNotFoundError: No module named ‘numpy‘以及No module named ‘xxx‘的原因及解决办法
猛狗哭泣
数据分析pythonbuganaconda
ModuleNotFoundError的两种类型及解决方法Nomodulenamed'numpy'Nomodulenamed'xxx'Nomodulenamed‘numpy’有的时候我们想import常用的包比如numpy或者pandas,而且电脑上是有安装这些包并且在Jupyter中可以正常使用的,但在VSCode或者Pycharm中import却会出现如题的错误。发生这种报错的原因是VSCod
- numpy和panda在数据统计时的注意事项
积跬步,慕至千里
软件安装及程序错误解决方案集数据分析所遇问题解答库numpy
numpy和panda在数据统计时的注意事项:NumPy中只要有数据缺失就会返回NaN而在Pandas中则会跳过该值对剩余的数值进行相应计算示例importpandasaspdimportnumpyasnpa=np.array([np.nan,1,3,5])b=pd.Series(a)print('变量a:',a,"\n变量b:\n",b)a.sum(),b.sum()输出结果:
- 【数据分析岗】关于数据分析岗面试python的金典问题+解答,包含数据读取、数据清洗、数据分析、机器学习等内容
摇光~
数据分析面试python
大家好,我是摇光~,用大白话讲解所有你难懂的知识点最近和几个大佬交流了,说了很多关于现在职场面试等问题,然后也找他们问了问他们基本面试的话都会提什么问题。所以我收集了很多关于python的面试题,希望对大家面试有用。类别1:数据读取与处理问题1:如何用Python从Excel文件中读取数据?答:在Python中,可以使用pandas库从Excel文件中读取数据。pandas提供了read_exce
- python图片分析中央气象台降水_python 画降水量色斑图问题
weixin_39884100
#引用部分importnumpyasnpimportpandasaspdfromscipy.interpolateimportRbf#径向基函数:将站点信息插到格点上用于绘制等值线importmatplotlib.pyplotaspltimportmatplotlib.colorsascolorsimportmatplotlibasmplimportcartopy.crsasccrsimportc
- python 代码实现了一个条件生成对抗网络(Conditional Generative Adversarial Network,CGAN),用于生成与给定的理化值相关的光谱数据
max500600
算法开发语言python生成对抗网络开发语言
importtensorflowastfimportnumpyasnpimportpandasaspdimportosimportmatplotlib.pyplotaspltfromsklearn.model_selectionimporttrain_test_splitfromtensorflow.keras.layersimportAdd,BatchNormalizationos.enviro
- Python酷库之旅-第三方库Pandas(117)
神奇夜光杯
pythonpandas开发语言人工智能标准库及第三方库excel学习与成长
目录一、用法精讲516、pandas.DataFrame.add_suffix方法516-1、语法516-2、参数516-3、功能516-4、返回值516-5、说明516-6、用法516-6-1、数据准备516-6-2、代码示例516-6-3、结果输出517、pandas.DataFrame.align方法517-1、语法517-2、参数517-3、功能517-4、返回值517-5、说明517-6
- Pandas数据处理基础6---插值填充及其用法
阳光下的米雪
Pandas数据处理python
插值填充插值是数值分析中一种方法。简而言之,就是借助于一个函数(线性或非线性),再根据已知数据去求解未知数据的值。插值在数据领域非常常见,它的好处在于,可以尽量去还原数据本身的样子。我们可以通过interpolate()方法完成线性插值。当然,其他一些插值算法可以阅读官方文档了解。#生成一个DataFramedf=pd.DataFrame({'A':[1.1,2.2,np.nan,4.5,
- Python pandas离散化方法优化与应用实例
python慕遥
Python数据分析Pandas数据科学pythonpandas机器学习
大家好,在数据分析中,离散化是将连续数据划分为不同区间的一种重要方法。这种方法可以更好地理解数据分布、简化分析、或在分类建模中对特征进行转换。在Python的Pandas库中,cut和qcut是两个强大的工具,分别用于基于固定区间和基于分位数对数据进行离散化。它们的灵活性和易用性使其在数据处理过程中十分常用。离散化可以将复杂的连续数据转化为更直观的区间,帮助快速发现数据分布规律,并且在机器学习中,
- Pandas数据预处理:处理缺失值 - 插值法
代码艺术巧匠
pandasPython
Pandas数据预处理:处理缺失值-插值法在数据分析和机器学习任务中,处理缺失值是一个常见的挑战。缺失值可能由于多种原因而产生,例如数据采集过程中的错误、设备故障或者用户不完整的输入。为了有效地处理缺失值,插值法是一种常用的技术。在本文中,我们将使用Python中的Pandas库来演示如何使用插值法处理缺失值。首先,我们需要导入Pandas库并加载包含缺失值的数据集。假设我们有一个名为df的数据框
- Python Pandas中的高级数据插值方法
python慕遥
Pandaspandas
大家好,在数据分析过程中,缺失值是一个常见的问题,尤其是在处理真实世界的数据集时,缺失值的存在可能会对分析结果产生较大的影响。为了解决这个问题,Pandas库提供了多种处理缺失值的方式,其中插值法是一种有效且灵活的解决方案。插值法可以通过已有的数据估算出缺失值,从而填补数据空白,提升数据的完整性和分析的准确性。1.插值法概述插值法是一种通过已知数据点来推算未知数据点的数学方法。在数据分析中,插值法
- pandas :将时间戳转换为 datetime.date
潮易
pandas
pandas:将时间戳转换为datetime.date首先,我们需要导入`pandas`库。然后,我们可以使用`pd.to_datetime()`函数将时间戳转换为日期对象。最后,我们可以使用`.dt.date`属性来获取日期部分。以下是详细的步骤:1.导入`pandas`库:```pythonimportpandasaspd```2.创建一个包含时间戳的DataFrame:```pythonda
- python SAP自动化并发送html outlook邮件
͝͝͝͝Bank
python自动化html
importtimeimportwin32com.clientimportpandasaspdimportlocaleimportsysfromdatetimeimportdatetimeimportwin32com.clientaswin32#获取当前日期和时间now=datetime.now()#将日期格式化为"dd.mm.yyyy"formatted_date=now.strftime("%
- 【刷题】【力扣】【180】【中等】连续出现的数字
丷从心
#力扣刷题力扣
文章目录@[toc]题目描述示例输入输出解释MySQL实现方法1方法2Pandas实现题目描述表:Logs+-------------+---------+|ColumnName|Type|+-------------+---------+|id|int||num|varchar|+-------------+---------+在SQL中,id是该表的主键id是一个自增列找出所有至少连续出现三次
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">