RNN系列博客:
经过上篇博客《RNN(recurrent neural network)(一)——基础知识》的介绍,大家应该对RNN的结构以及如何运行的有个比较清晰地认识了,这一篇博客再来挑战更难一点的任务——自己动手撸一个RNN,相信自己动手写完后,会对RNN有一个更深的了解。这篇博客主要从两个部分介绍,首先对RNN的bp做一个推导,其次就是用python编程实现RNN。
注:代码部分几乎完全使用ng deep-learning课的作业代码。
一、RNN的前向传播
首先还是直接放上ng在《sequence model》课程里的图:
这是单个cell的,那么整个forward propagation的示意图为(图来自ng《sequence model》课):
因此,前向传播的公式为:
a < t > = t a n h ( W a x x < t > + W a a a < t − 1 > + b a ) a^{<t>} = tanh(W_{ax}x^{<t>} + W_{aa}a^{<t-1>} + b_a) a<t>=tanh(Waxx<t>+Waaa<t−1>+ba)
y ^ < t > = s o f t m a x ( W y a a < t > + b y ) \widehat{y}^{<t>} = softmax(W_{ya}a^{<t>} + b_y) y <t>=softmax(Wyaa<t>+by)
二、损失函数(Loss function)
机器学习任务,首先得有个目标,自然就是loss函数了,RNN的loss函数使用交叉熵(cross entropy),接下来我对RNN的loss函数可能会讲的比较细,主要是为了让大家能够了解清楚。我们把应用场景选定为ng的课后作业——生成恐龙名字,说白了就是生个一个单词,具体细节就是在给定前k个字符的情况下,生成最合理的第k+1个字符,首先假设训练集有 n n n个样本(sequence),一个样本就是一个单词(恐龙名字),也可以理解为一个sequence,因为字符之间存在顺序关系。对于某一个sequence,RNN的结构就如图二所示,对于单个cell而言,loss函数为:
L ( i ) < t > ( y ^ ( i ) < t > , y ( i ) < t > ) = ∑ k = 1 ∣ C ∣ − y k ( i ) < t > l o g y ^ k ( i ) < t > L^{(i)<t>} (\widehat{y}^{(i)<t>}, y^{(i)<t>}) = \sum_{k=1}^{|C|}-y_k^{(i)<t>}log\widehat{y}_k^{(i)<t>} L(i)<t>(y (i)<t>,y(i)<t>)=k=1∑∣C∣−yk(i)<t>logy k(i)<t>
这里, C C C是类别,一般就是词表的大小。 y < t > y^{<t>} y<t>是真实值,一般是个one-hot向量,大小等于词表的大小, y ^ < t > \widehat{y}^{<t>} y <t>也是个向量,是softmax层输出的概率分布,大小也是词表的大小,两个向量是点乘,即对应元素相乘,但因为 y < t > y^{<t>} y<t>是个one-hot向量,所以只有是1个那个元素起了作用,其他都是0。
因此,对于一个sequence来说,Loss函数为:
L ( y ^ ( i ) , y ( i ) ) = ∑ t = 1 T x L ( i ) < t > ( y ^ ( i ) < t > , y ( i ) < t > ) = − ∑ t = 1 T x ∑ k = 1 ∣ C ∣ y k ( i ) < t > l o g y ^ k ( i ) < t > \begin{array}{lcl} L (\widehat{y}^{(i)}, y^{(i)}) & = & \sum_{t=1}^{T_x}L^{(i)<t>} (\widehat{y}^{(i)<t>}, y^{(i)<t>})\\\\ & = & -\sum_{t=1}^{T_x}\sum_{k=1}^{|C|}y_k^{(i)<t>}log\widehat{y}_k^{(i)<t>} \end{array} L(y (i),y(i))==∑t=1TxL(i)<t>(y (i)<t>,y(i)<t>)−∑t=1Tx∑k=1∣C∣yk(i)<t>logy k(i)<t>
这里 T x T_x Tx是一个sequence的长度,那么在整个训练集上的Loss函数为:
L ( y ^ , y ) = 1 n ∑ i = 1 n ∑ t = 1 T x L ( i ) < t > ( y ^ ( i ) < t > , y ( i ) < t > ) = − 1 n ∑ i = 1 n ∑ t = 1 T x ∑ k = 1 ∣ C ∣ y k ( i ) < t > l o g y ^ k ( i ) < t > \begin{array}{lcl} L (\widehat{y}, y) & = & \frac{1}{n}\sum_{i=1}^{n}\sum_{t=1}^{T_x}L^{(i)<t>} (\widehat{y}^{(i)<t>}, y^{(i)<t>})\\\\ & = & -\frac{1}{n}\sum_{i=1}^{n}\sum_{t=1}^{T_x}\sum_{k=1}^{|C|}y_k^{(i)<t>}log\widehat{y}_k^{(i)<t>} \end{array} L(y ,y)==n1∑i=1n∑t=1TxL(i)<t>(y (i)<t>,y(i)<t>)−n1∑i=1n∑t=1Tx∑k=1∣C∣yk(i)<t>logy k(i)<t>
之所以要求个均值,是为了更加准确的刻画网络在数据上的拟合程度,方便loss之间的比较,比如一个数据集有10w条样本,而另一个有1000条,如果不求均值,那么即使在10w条样本上的那个网络性能更好,也有可能loss比在1000条上的大。
三、后向传播(back-propagation through time,BPTT)
实际上,RNN中bp应该叫back-propagation through time,BPTT(通过时间反向传播),其实还是和bp一样,只是名字更加生动形象。我们的目标是求 W a x W_{ax} Wax、 W a a W_{aa} Waa、 W y a W_{ya} Wya、 b y b_y by、 b a b_a ba的梯度(导数),还是要再放一下这个图,因为没办法,太需要了。
在求上面几个参数的导数之前,先把 t a n h ( x ) tanh(x) tanh(x)的导数求了,因为后面很多地方都要用到。 t a n h ( x ) tanh(x) tanh(x)的公式为:
t a n h ( x ) = 1 − e − 2 x 1 + e − 2 x tanh(x) = \frac{1 - e^{-2x}}{1 + e^{-2x}} tanh(x)=1+e−2x1−e−2x
因此,导数为:
t a n h ( x ) ′ = − e − 2 x ⋅ ( − 2 ) ( 1 + e − 2 x ) 2 − ( 1 − e − 2 x ) ⋅ e − 2 x ⋅ ( − 2 ) ( 1 + e − 2 x ) 2 = 4 e − 2 x ( 1 + e − 2 x ) 2 = 1 − ( 1 − e − 2 x 1 + e − 2 x ) 2 = 1 − t a n h 2 ( x ) \begin{aligned} {tanh(x)}' &= \frac{- e^{-2x}\cdot(-2)(1 + e^{-2x})^{2} - (1 - e^{-2x})\cdot e^{-2x}\cdot(-2)}{(1 + e^{-2x})^{2}}\\ &= \frac{4e^{-2x}}{(1 + e^{-2x})^{2}}\\\\ &= 1- (\frac{1 - e^{-2x}}{1 + e^{-2x}})^2\\\\ &=1 - tanh^2(x) \end{aligned} tanh(x)′=(1+e−2x)2−e−2x⋅(−2)(1+e−2x)2−(1−e−2x)⋅e−2x⋅(−2)=(1+e−2x)24e−2x=1−(1+e−2x1−e−2x)2=1−tanh2(x)
根据求导时的链式法则:
∂ L ∂ W a x = ∂ L ∂ a < t > ⋅ ∂ a < t > ∂ W a x = ∂ L ∂ a < t > ⋅ t a n h ′ ( W a x x < t > + W a a a < t − 1 > + b a ) ⋅ x < t > = ∂ L ∂ a < t > ⋅ ( 1 − t a n h 2 ( W a x x < t > + W a a a < t − 1 > + b a ) ⋅ x < t > ) \begin{aligned} \frac{\partial L}{\partial W_{ax}} &= \frac{\partial L}{\partial a^{<t>}}\cdot \frac{\partial a^{<t>}}{\partial W_{ax}}\\\\ &=\frac{\partial L}{\partial a^{<t>}}\cdot {tanh}'(W_{ax}x^{<t>} + W_{aa}a^{<t-1>} + b_a)\cdot x^{<t>}\\\\ &=\frac{\partial L}{\partial a^{<t>}}\cdot (1 - tanh^2(W_{ax}x^{<t>} + W_{aa}a^{<t-1>} + b_a)\cdot x^{<t>}) \end{aligned} ∂Wax∂L=∂a<t>∂L⋅∂Wax∂a<t>=∂a<t>∂L⋅tanh′(Waxx<t>+Waaa<t−1>+ba)⋅x<t>=∂a<t>∂L⋅(1−tanh2(Waxx<t>+Waaa<t−1>+ba)⋅x<t>)
∂ L ∂ W a a = ∂ L ∂ a < t > ⋅ ∂ a < t > ∂ W a a = ∂ L ∂ a < t > ⋅ t a n h ′ ( W a x x < t > + W a a a < t − 1 > + b a ) ⋅ a < t − 1 > = ∂ L ∂ a < t > ⋅ ( 1 − t a n h 2 ( W a x x < t > + W a a a < t − 1 > + b a ) ⋅ a < t − 1 > ) \begin{aligned} \frac{\partial L}{\partial W_{aa}} &= \frac{\partial L}{\partial a^{<t>}}\cdot \frac{\partial a^{<t>}}{\partial W_{aa}}\\\\ &=\frac{\partial L}{\partial a^{<t>}}\cdot {tanh}'(W_{ax}x^{<t>} + W_{aa}a^{<t-1>} + b_a)\cdot a^{<t-1>}\\\\ &=\frac{\partial L}{\partial a^{<t>}}\cdot (1 - tanh^2(W_{ax}x^{<t>} + W_{aa}a^{<t-1>} + b_a)\cdot a^{<t-1>}) \end{aligned} ∂Waa∂L=∂a<t>∂L⋅∂Waa∂a<t>=∂a<t>∂L⋅tanh′(Waxx<t>+Waaa<t−1>+ba)⋅a<t−1>=∂a<t>∂L⋅(1−tanh2(Waxx<t>+Waaa<t−1>+ba)⋅a<t−1>)
∂ L ∂ b a = ∂ L ∂ a < t > ⋅ ∂ a < t > ∂ b a = ∂ L ∂ a < t > ⋅ t a n h ′ ( W a x x < t > + W a a a < t − 1 > + b a ) = ∂ L ∂ a < t > ⋅ ( 1 − t a n h 2 ( W a x x < t > + W a a a < t − 1 > + b a ) ) \begin{aligned} \frac{\partial L}{\partial b_{a}} &= \frac{\partial L}{\partial a^{<t>}}\cdot \frac{\partial a^{<t>}}{\partial b_{a}}\\\\ &=\frac{\partial L}{\partial a^{<t>}}\cdot {tanh}'(W_{ax}x^{<t>} + W_{aa}a^{<t-1>} + b_a)\\\\ &=\frac{\partial L}{\partial a^{<t>}}\cdot (1 - tanh^2(W_{ax}x^{<t>} + W_{aa}a^{<t-1>} + b_a)) \end{aligned} ∂ba∂L=∂a<t>∂L⋅∂ba∂a<t>=∂a<t>∂L⋅tanh′(Waxx<t>+Waaa<t−1>+ba)=∂a<t>∂L⋅(1−tanh2(Waxx<t>+Waaa<t−1>+ba))
接下来是求 W y a W_{ya} Wya和 b y b_y by的梯度,还有要求 ∂ L ∂ a < t > \frac{\partial L}{\partial a^{<t>}} ∂a<t>∂L,这都涉及到softmax求导,softmax的求导会稍微复杂一点。在RNN cell中预测值的输出为:
y ^ < t > = s o f t m a x ( W y a a < t > + b y ) \widehat{y}^{<t>} = softmax(W_{ya}a^{<t>} + b_y) y <t>=softmax(Wyaa<t>+by)
为了求导方便,我们先令: Z < t > = W y a a < t > + b y Z^{<t>}=W_{ya}a^{<t>} + b_y Z<t>=Wyaa<t>+by,那么:
y ^ k < t > = s o f t m a x ( Z k < t > ) = e Z k < t > ∑ l = 1 C e Z l < t > \begin{aligned} \widehat{y}^{<t>}_k &= softmax(Z^{<t>}_k)\\ &= \frac{e^{Z^{<t>}_k}}{\sum_{l=1}^Ce^{Z^{<t>}_l}} \end{aligned} y k<t>=softmax(Zk<t>)=∑l=1CeZl<t>eZk<t>
其中, k k k表示预测样本属于第 k k k类, C C C表示类别数目,比如常见的二分类,那么 C = 2 C=2 C=2,在自然语言处理序列任务中,C一般等于词表大小。
对softmax求导,有一点要考虑的就是,因为经过softmax的输出有:[ y ^ 1 < t > \widehat{y}^{<t>}_1 y 1<t>, y ^ 2 < t > \widehat{y}^{<t>}_2 y 2<t>,…, y ^ C < t > \widehat{y}^{<t>}_C y C<t>] ,假如求 ∂ L ∂ Z j < t > \frac{\partial L}{\partial {Z}^{<t>}_j} ∂Zj<t>∂L,其实从 y ^ 1 < t > \widehat{y}^{<t>}_1 y 1<t>到 y ^ C < t > \widehat{y}^{<t>}_C y C<t>都包含 Z j < t > {Z}^{<t>}_j Zj<t>( y ^ j < t > \widehat{y}^{<t>}_j y j<t>分子分母都包含,其它的 C C C- 1 1 1项( y ^ k < t > , k ≠ j \widehat{y}^{<t>}_k,k\neq j y k<t>,k̸=j)只有分母包含),所以这时候就要分上面两种情况来分开求导。
因此,对于某一个cell(就当做是最后一个cell吧,这样理解可能更容易懂),我们把loss函数拆写成两部分:
L ( y ^ < t > , y < t > ) = 1 n ∑ i = 1 n L ( i ) < t > ( y ^ ( i ) < t > , y ( i ) < t > ) = − 1 n ∑ i = 1 n ∑ k = 1 ∣ C ∣ y k ( i ) < t > l o g y ^ k ( i ) < t > = − 1 n ∑ i = 1 n [ ∑ k = 1 , k ≠ j ∣ C ∣ y k ( i ) < t > l o g y ^ k ( i ) < t > + y j ( i ) < t > l o g y ^ j ( i ) < t > ] \begin{array}{lcl} L (\widehat{y}^{<t>}, y^{<t>}) & = & \frac{1}{n}\sum_{i=1}^{n}L^{(i)<t>} (\widehat{y}^{(i)<t>}, y^{(i)<t>})\\\\ & = & -\frac{1}{n}\sum_{i=1}^{n}\sum_{k=1}^{|C|}y_k^{(i)<t>}log\widehat{y}_k^{(i)<t>}\\\\ &=& -\frac{1}{n}\sum_{i=1}^{n}[\sum_{k=1,k\neq j}^{|C|}y_k^{(i)<t>}log\widehat{y}_k^{(i)<t>} + y_j^{(i)<t>}log\widehat{y}_j^{(i)<t>}] \end{array} L(y <t>,y<t>)===n1∑i=1nL(i)<t>(y (i)<t>,y(i)<t>)−n1∑i=1n∑k=1∣C∣yk(i)<t>logy k(i)<t>−n1∑i=1n[∑k=1,k̸=j∣C∣yk(i)<t>logy k(i)<t>+yj(i)<t>logy j(i)<t>]
下面来求导,先对第一部分 k ≠ j k \neq j k̸=j 求导:
∂ L ∂ Z j < t > = − ∑ k = 1 , k ≠ j ∣ C ∣ ∂ L ( k ) ∂ y ^ k < t > ⋅ ∂ y ^ k < t > ∂ Z j < t > = − ∑ k = 1 , k ≠ j ∣ C ∣ y k < t > ⋅ 1 y ^ k < t > ⋅ e Z k < t > ⋅ − 1 ( ∑ l = 1 C e Z l < t > ) 2 ⋅ e Z j < t > = − ∑ k = 1 , k ≠ j ∣ C ∣ y k < t > ⋅ 1 y ^ k < t > ⋅ ( − 1 ) ⋅ e Z k < t > ∑ l = 1 C e Z l < t > ⋅ e Z j < t > ∑ l = 1 C e Z l < t > = − ∑ k = 1 , k ≠ j ∣ C ∣ y k < t > ⋅ 1 y ^ k < t > ⋅ ( − 1 ) ⋅ y ^ k < t > ⋅ y ^ j < t > = ∑ k = 1 , k ≠ j ∣ C ∣ y k < t > ⋅ y ^ j < t > \begin{array}{lcl} \frac{\partial L}{\partial Z^{<t>}_j} &=& -\sum_{k=1,k\neq j}^{|C|}\frac{\partial L^{(k)}}{\partial \widehat{y}^{<t>}_k}\cdot \frac{\partial \widehat{y}^{<t>}_k}{\partial Z^{<t>}_j}\\\\ &=&-\sum_{k=1,k\neq j}^{|C|}y_{k}^{<t>}\cdot \frac{1}{\widehat{y}_{k}^{<t>}}\cdot e^{Z_{k}^{<t>}}\cdot \frac{-1}{(\sum_{l=1}^Ce^{Z_{l}^{<t>}})^{2}}\cdot e^{Z_{j}^{<t>}}\\\\ &=&-\sum_{k=1,k\neq j}^{|C|}y_{k}^{<t>}\cdot \frac{1}{\widehat{y}_{k}^{<t>}}\cdot(-1)\cdot\frac{e^{Z_{k}^{<t>}}}{\sum_{l=1}^Ce^{Z_{l}^{<t>}}}\cdot \frac{e^{Z_{j}^{<t>}}}{\sum_{l=1}^Ce^{Z_{l}^{<t>}}}\\\\ &=&-\sum_{k=1,k\neq j}^{|C|}y_{k}^{<t>}\cdot \frac{1}{\widehat{y}_{k}^{<t>}}\cdot(-1)\cdot \widehat{y}_{k}^{<t>}\cdot \widehat{y}_{j}^{<t>}\\\\ &=&\sum_{k=1,k\neq j}^{|C|}y_{k}^{<t>}\cdot \widehat{y}_{j}^{<t>} \end{array} ∂Zj<t>∂L=====−∑k=1,k̸=j∣C∣∂y k<t>∂L(k)⋅∂Zj<t>∂y k<t>−∑k=1,k̸=j∣C∣yk<t>⋅y k<t>1⋅eZk<t>⋅(∑l=1CeZl<t>)2−1⋅eZj<t>−∑k=1,k̸=j∣C∣yk<t>⋅y k<t>1⋅(−1)⋅∑l=1CeZl<t>eZk<t>⋅∑l=1CeZl<t>eZj<t>−∑k=1,k̸=j∣C∣yk<t>⋅y k<t>1⋅(−1)⋅y k<t>⋅y j<t>∑k=1,k̸=j∣C∣yk<t>⋅y j<t>
接下来对第二部分也就是 k = j k = j k=j 时,求导:
∂ L ( j ) ∂ Z j < t > = − ∂ L ( j ) ∂ y ^ j < t > ⋅ ∂ y ^ j < t > ∂ Z j < t > = − y j < t > ⋅ 1 y ^ j < t > ⋅ e Z j < t > ⋅ ∑ l = 1 C e Z l < t > − e Z j < t > ⋅ e Z j < t > ( ∑ l = 1 C e Z l < t > ) 2 = − y j < t > ⋅ 1 y ^ j < t > ⋅ e Z j < t > ⋅ ( ∑ l = 1 C e Z l < t > − e Z j < t > ) ( ∑ l = 1 C e Z l < t > ) 2 = − y j < t > ⋅ 1 y ^ j < t > ⋅ e Z j < t > ∑ l = 1 C e Z l < t > ⋅ ( 1 − e Z j < t > ∑ l = 1 C e Z l < t > ) = − y j < t > ⋅ 1 y ^ j < t > ⋅ y ^ j < t > ⋅ ( 1 − y ^ j < t > ) = − y j < t > ⋅ ( 1 − y ^ j < t > ) \begin{array}{lcl} \frac{\partial L^{(j)}}{\partial Z^{<t>}_j} &=& -\frac{\partial L^{(j)}}{\partial \widehat{y}^{<t>}_j}\cdot \frac{\partial \widehat{y}^{<t>}_j}{\partial Z^{<t>}_j}\\\\ &=&-y_{j}^{<t>}\cdot \frac{1}{\widehat{y}_{j}^{<t>}}\cdot \frac{e^{Z_{j}^{<t>}}\cdot \sum_{l=1}^Ce^{Z_{l}^{<t>}} - e^{Z_{j}^{<t>}}\cdot e^{Z_{j}^{<t>}}}{(\sum_{l=1}^Ce^{Z_{l}^{<t>}})^{2}}\\\\ &=&-y_{j}^{<t>}\cdot \frac{1}{\widehat{y}_{j}^{<t>}}\cdot \frac{e^{Z_{j}^{<t>}}\cdot (\sum_{l=1}^Ce^{Z_{l}^{<t>}} - e^{Z_{j}^{<t>}})}{(\sum_{l=1}^Ce^{Z_{l}^{<t>}})^{2}}\\\\ &=&-y_{j}^{<t>}\cdot \frac{1}{\widehat{y}_{j}^{<t>}}\cdot\frac{e^{Z_{j}^{<t>}}}{\sum_{l=1}^Ce^{Z_{l}^{<t>}}}\cdot (1 - \frac{e^{Z_{j}^{<t>}}}{\sum_{l=1}^Ce^{Z_{l}^{<t>}}})\\\\ &=&-y_{j}^{<t>}\cdot \frac{1}{\widehat{y}_{j}^{<t>}}\cdot \widehat{y}_{j}^{<t>}\cdot (1 - \widehat{y}_{j}^{<t>})\\\\ &=&-y_{j}^{<t>}\cdot (1 -\widehat{y}_{j}^{<t>}) \end{array} ∂Zj<t>∂L(j)======−∂y j<t>∂L(j)⋅∂Zj<t>∂y j<t>−yj<t>⋅y j<t>1⋅(∑l=1CeZl<t>)2eZj<t>⋅∑l=1CeZl<t>−eZj<t>⋅eZj<t>−yj<t>⋅y j<t>1⋅(∑l=1CeZl<t>)2eZj<t>⋅(∑l=1CeZl<t>−eZj<t>)−yj<t>⋅y j<t>1⋅∑l=1CeZl<t>eZj<t>⋅(1−∑l=1CeZl<t>eZj<t>)−yj<t>⋅y j<t>1⋅y j<t>⋅(1−y j<t>)−yj<t>⋅(1−y j<t>)
现在把两部分相加起来,得到:
∂ L ∂ Z j < t > = ∑ k = 1 , k ≠ j ∣ C ∣ y k < t > ⋅ y ^ j < t > + [ − y j < t > ⋅ ( 1 − y ^ j < t > ) ] = ∑ k = 1 , k ≠ j ∣ C ∣ y k < t > ⋅ y ^ j < t > + y ^ j < t > ⋅ y ^ j < t > − y j < t > = ∑ k = 1 ∣ C ∣ y k < t > ⋅ y ^ j < t > − y j < t > = y ^ j < t > ⋅ ∑ k = 1 ∣ C ∣ y k < t > − y j < t > = y ^ j < t > − y j < t > \begin{array}{lcl} \frac{\partial L}{\partial Z^{<t>}_j} &=&\sum_{k=1,k\neq j}^{|C|}y_{k}^{<t>}\cdot \widehat{y}_{j}^{<t>} + [-y_{j}^{<t>}\cdot (1 -\widehat{y}_{j}^{<t>})]\\\\ &=& \sum_{k=1,k\neq j}^{|C|}y_{k}^{<t>}\cdot \widehat{y}_{j}^{<t>} + \widehat{y}_{j}^{<t>}\cdot \widehat{y}_{j}^{<t>} - y_{j}^{<t>}\\\\ &=&\sum_{k=1}^{|C|}y_{k}^{<t>}\cdot \widehat{y}_{j}^{<t>} - y_{j}^{<t>}\\\\ &=&\widehat{y}_{j}^{<t>}\cdot \sum_{k=1}^{|C|}y_{k}^{<t>}- y_{j}^{<t>}\\\\ &=&\widehat{y}_{j}^{<t>} - y_{j}^{<t>} \end{array} ∂Zj<t>∂L=====∑k=1,k̸=j∣C∣yk<t>⋅y j<t>+[−yj<t>⋅(1−y j<t>)]∑k=1,k̸=j∣C∣yk<t>⋅y j<t>+y j<t>⋅y j<t>−yj<t>∑k=1∣C∣yk<t>⋅y j<t>−yj<t>y j<t>⋅∑k=1∣C∣yk<t>−yj<t>y j<t>−yj<t>
这里解释下上面这个公式导数第二部怎么化为倒数第一步的,其实也就是 ∑ k = 1 ∣ C ∣ y k < t > \sum_{k=1}^{|C|}y_{k}^{<t>} ∑k=1∣C∣yk<t>为什么是 1 1 1,因为 y k < t > y_{k}^{<t>} yk<t>是真实值,在 C C C个里面,只有一个类别为1,其它都是0,(想想 one-hot),所以和为1。
接下来,我们就可以很容易的得到 ∂ L ∂ a < t > \frac{\partial L}{\partial a^{<t>}} ∂a<t>∂L ,因为我们设的 Z < t > = W y a a < t > + b y Z^{<t>}=W_{ya}a^{<t>} + b_y Z<t>=Wyaa<t>+by,所以:
∂ L ∂ a < t > = ∂ L ∂ Z < t > ⋅ ∂ Z < t > ∂ a < t > = ( y ^ < t > − y < t > ) ⋅ W y a \begin{aligned} \frac{\partial L}{\partial a^{<t>}} &= \frac{\partial L}{\partial Z^{<t>}}\cdot \frac{\partial Z^{<t>}}{\partial a^{<t>}}\\\\ &=(\widehat{y}^{<t>} - y^{<t>})\cdot W_{ya} \end{aligned} ∂a<t>∂L=∂Z<t>∂L⋅∂a<t>∂Z<t>=(y <t>−y<t>)⋅Wya
∂ L ∂ W y a = ∂ L ∂ Z < t > ⋅ ∂ Z < t > ∂ W y a = ( y ^ < t > − y < t > ) ⋅ a < t > \begin{aligned} \frac{\partial L}{\partial W_{ya}} &= \frac{\partial L}{\partial Z^{<t>}}\cdot \frac{\partial Z^{<t>}}{\partial W_{ya}}\\\\ &=(\widehat{y}^{<t>} - y^{<t>})\cdot a^{<t>} \end{aligned} ∂Wya∂L=∂Z<t>∂L⋅∂Wya∂Z<t>=(y <t>−y<t>)⋅a<t>
因此,整个bp推导结束,关于 1 n \frac{1}{n} n1 一般是要加上的,原因前面也讲过了,不过这就是个常数,对于求导没有任何影响,我们在实现的时候加上。
四、梯度裁剪(gradient clipping)
前面已经把RNN的知识点全部介绍完了,但是训练RNN的过程并不总是那么愉快,我们总是希望loss随着迭代次数的进行是像蓝线那样不停的下降,然而事实却是绿线那样,直到你看到loss抛出了NaN。(图片来自李宏毅RNN课件)。
产生梯度爆炸和消失的原因是因为RNN中经常出现像下图所示那样陡峭的悬崖(loss对参数的变化)(图片来自李宏毅RNN),如下图所示,幸运的情况下我们更新梯度后正好是在平面上,这时loss在缓缓的下降,但不幸的时候参数(w1,w2)直接跳上了悬崖,这就会导致loss暴增,下面如果再跳下来,loss又会爆减,这就对应了上图中的绿色曲线。但是最不幸的是有时候正在踩在悬崖峭壁上,然后下面就是直接飞出去了,导致loss直接Nan了。这样的话RNN就没法继续训练下去了。
Mikolov大神(word2vec的发明者)最早想出了解决办法,这就是 梯度裁剪(Gradient Clipping)。其实梯度裁剪的思想相当的直白和简单,但是能想出来并且work就已经是件很厉害的事情了。梯度裁剪的思想是:如果梯度大于某个阈值或者小于阈值的负数,就用直接让它等于阈值。比如,设置阈值为10,那么如果求得的梯度如果大于10,或者小于-10,则直接设置梯度为10。这样做的好处显而易见,回到上面的图,飞出去的那条线,就是因为梯度太大或者太小导致参数更新后,loss爆了,采用梯度裁剪后,会使得飞出去的线变成虚线所示,继续落在面上,可以继续训练。
五、RNN的实现
注:实现部分参考ng的deep learning课堂作业,关于RNN的实现,有一个点需要注意的,因为我们每个句子(单词)的长度是不同的,所以有两种方法去处理:
1.对句子(单词)进行对齐,自己设置对齐长度(可以设置为长度最长的单词,不足的用一个标记符来填充,比如keras中可使用pad_sequences()函数来截长补短),但这样做在计算loss的时候需要注意,因为计算每一个timestamp的loss的时候填充的标记符不能计算,可以自己设置个mask矩阵来标记计算的时候忽略那些填充符号。现在为了矩阵并行计算,大多使用这种方法。
2.不对句子(单词)进行对齐,但在做前向后向的时候要一个一个样本的去做,也就是for循环遍历样例,这样做计算量上大一点。ng的作业即采用这种方法。
这篇博客应用场景依然采用ng作业,即生成恐龙的名字,所以采用第二种方法。有时间的话,也会实现第一种方法,毕竟第一种方法主流些。
接下来就是RNN的实现,难点主要在bp上,实现bp有个技巧,因为链式法则,(不怎么好描述,直接举个例子),假如 y = t 2 y= t^2 y=t2, t = 4 x + 1 t = 4x + 1 t=4x+1,如果我们想求 ∂ y ∂ x \frac{\partial y}{\partial x} ∂x∂y,根据链式法则, ∂ y ∂ x = ∂ y ∂ t ⋅ ∂ t ∂ x \frac{\partial y}{\partial x} = \frac{\partial y}{\partial t} \cdot \frac{\partial t}{\partial x} ∂x∂y=∂t∂y⋅∂x∂t,如果在给定 ∂ y ∂ t \frac{\partial y}{\partial t} ∂t∂y的情况,我们就不用管他前面无论有多少级联,都不用管,我们只要求 ∂ t ∂ x \frac{\partial t}{\partial x} ∂x∂t就可以了。所以,我们实现的时}候,传入的参数就是上一级的梯度就可以了(如下图所示,如果给定 d a < 2 > da^{<2>} da<2>(两条红线),我们就不用管它后面的级联了,写代码的时候只要把 d a < 2 > da^{<2>} da<2>当参数传进来就可以了),只要实现本cell(层)的参数的求导就ok了。
关于基本RNN网络的实现,主要有 参数初始化、前向传播、后向传播、参数更新(+梯度裁剪)这四部分。
5.1 参数初始化
def initialize_parameters(n_a, n_x, n_y):
"""
Initialize parameters with small random values
Returns:
parameters -- python dictionary containing:
Wax -- Weight matrix multiplying the input, of shape (n_a, n_x)
Waa -- Weight matrix multiplying the hidden state, of shape (n_a, n_a)
Wya -- Weight matrix relating the hidden-state to the output, of shape (n_y, n_a)
b -- Bias, of shape (n_a, 1)
by -- Bias relating the hidden-state to the output, of shape (n_y, 1)
"""
np.random.seed(1)
Wax = np.random.randn(n_a, n_x) * 0.01 # input to hidden
Waa = np.random.randn(n_a, n_a) * 0.01 # hidden to hidden
Wya = np.random.randn(n_y, n_a) * 0.01 # hidden to output
ba = np.zeros((n_a, 1)) # hidden bias
by = np.zeros((n_y, 1)) # output bias
parameters = {
"Wax": Wax, "Waa": Waa, "Wya": Wya, "ba": ba, "by": by}
return parameters
5.2 前向传播
单个cell的实现:
def rnn_step_forward(xt, a_prev, parameters):
"""
Implements a single forward step of the RNN-cell that uses a tanh activation function
Arguments:
xt -- the input data at timestep "t", of shape (n_x, m).
a_prev -- Hidden state at timestep "t-1", of shape (n_a, m)
**here, n_x denotes the dimension of word vector, n_a denotes the number of hidden units in a RNN cell
parameters -- python dictionary containing:
Wax -- Weight matrix multiplying the input, of shape (n_a, n_x)
Waa -- Weight matrix multiplying the hidden state, of shape (n_a, n_a)
Wya -- Weight matrix relating the hidden-state to the output, of shape (n_y, n_a)
ba -- Bias,of shape (n_a, 1)
by -- Bias relating the hidden-state to the output,of shape (n_y, 1)
Returns:
a_next -- next hidden state, of shape (n_a, 1)
yt_pred -- prediction at timestep "t", of shape (n_y, 1)
"""
# get parameters from "parameters"
Wax = parameters["Wax"] #(n_a, n_x)
Waa = parameters["Waa"] #(n_a, n_a)
Wya = parameters["Wya"] #(n_y, n_a)
ba = parameters["ba"] #(n_a, 1)
by = parameters["by"] #(n_y, 1)
a_next = np.tanh(np.dot(Waa, a_prev) + np.dot(Wax, xt) + ba)
yt_pred = softmax(np.dot(Wya, a_next) + by) #(n_y,1)
return a_next, yt_pred
整个前向传播过程:
def rnn_forward(X, Y, a0, parameters, vocab_size=27):
x, a, y_hat = {
}, {
}, {
}
a[-1] = np.copy(a0)
# initialize your loss to 0
loss = 0
for t in range(len(X)):
# Set x[t] to be the one-hot vector representation of the t'th character in X.
# if X[t] == None, we just have x[t]=0. This is used to set the input for the first timestep to the zero vector.
x[t] = np.zeros((vocab_size, 1))
if (X[t] != None):
x[t][X[t]] = 1
# Run one step forward of the RNN
a[t], y_hat[t] = rnn_step_forward(parameters, a[t - 1], x[t]) #a[t]: (n_a,1), y_hat[t]:(n_y,1)
# Update the loss by substracting the cross-entropy term of this time-step from it.
#这里因为真实的label也是采用onehot表示的,因此只要把label向量中1对应的概率拿出来就行了
loss -= np.log(y_hat[t][Y[t], 0])
cache = (y_hat, a, x)
return loss, cache
5.3 后向传播
def rnn_step_backward(dy, gradients, parameters, x, a, a_prev):
gradients['dWya'] += np.dot(dy, a.T)
gradients['dby'] += dy
Wya = parameters['Wya']
Waa = parameters['Waa']
da = np.dot(Wya.T, dy) + gradients['da_next'] #每个cell的Upstream有两条,一条da_next过来的,一条y_hat过来的
dtanh = (1 - a * a) * da # backprop through tanh nonlinearity
gradients['dba'] += dtanh
gradients['dWax'] += np.dot(dtanh, x.T)
gradients['dWaa'] += np.dot(dtanh, a_prev.T)
gradients['da_next'] = np.dot(Waa.T, dtanh)
return gradients
def rnn_backward(X, Y, parameters, cache):
# Initialize gradients as an empty dictionary
gradients = {
}
# Retrieve from cache and parameters
(y_hat, a, x) = cache
Waa, Wax, Wya, by, ba = parameters['Waa'], parameters['Wax'], parameters['Wya'], parameters['by'], parameters['ba']
# each one should be initialized to zeros of the same dimension as its corresponding parameter
gradients['dWax'], gradients['dWaa'], gradients['dWya'] = np.zeros_like(Wax), np.zeros_like(Waa), np.zeros_like(Wya)
gradients['dba'], gradients['dby'] = np.zeros_like(ba), np.zeros_like(by)
gradients['da_next'] = np.zeros_like(a[0])
# Backpropagate through time
for t in reversed(range(len(X))):
dy = np.copy(y_hat[t])
dy[Y[t]] -= 1 #计算y_hat - y,即预测值-真实值,因为真实值是one-hot向量,只有1个1,其它都是0,
# 所以只要在预测值(向量)对应位置减去1即可,其它位置减去0相当于没变
gradients = rnn_step_backward(dy, gradients, parameters, x[t], a[t], a[t - 1])
return gradients, a
5.4 参数更新
#梯度裁剪
def clip(gradients, maxValue):
'''
Clips the gradients' values between minimum and maximum.
Arguments:
gradients -- a dictionary containing the gradients "dWaa", "dWax", "dWya", "db", "dby"
maxValue -- everything above this number is set to this number, and everything less than -maxValue is set to -maxValue
Returns:
gradients -- a dictionary with the clipped gradients.
'''
dWaa, dWax, dWya, db, dby = gradients['dWaa'], gradients['dWax'], gradients['dWya'], gradients['dba'], gradients['dby']
# clip to mitigate exploding gradients, loop over [dWax, dWaa, dWya, dba, dby].
for gradient in [dWax, dWaa, dWya, dba, dby]:
np.clip(gradient, -maxValue, maxValue, gradient)
gradients = {
"dWaa": dWaa, "dWax": dWax, "dWya": dWya, "db": dba, "dby": dby}
return gradients
#更新梯度
def update_parameters(parameters, gradients, lr):
parameters['Wax'] += -lr * gradients['dWax']
parameters['Waa'] += -lr * gradients['dWaa']
parameters['Wya'] += -lr * gradients['dWya']
parameters['ba'] += -lr * gradients['dba']
parameters['by'] += -lr * gradients['dby']
return parameters
到这里,RNN(基于生成单词的这个场景)基本写完了,在生成单词这个任务场景里,每一个时间步都要基于前面的字符生成一个字符,每一步的输出是softmax向量(概率分布),表示字符表里每个字符的概率,我们需要采样得到下一个字符。下面是采样的代码:
def sample(parameters, char_to_ix, seed):
"""
Sample a sequence of characters according to a sequence of probability distributions output of the RNN
Arguments:
parameters -- python dictionary containing the parameters Waa, Wax, Wya, by, and b.
char_to_ix -- python dictionary mapping each character to an index.
seed -- used for grading purposes. Do not worry about it.
Returns:
indices -- a list of length n containing the indices of the sampled characters.
"""
# Retrieve parameters and relevant shapes from "parameters" dictionary
Waa, Wax, Wya, by, ba = parameters['Waa'], parameters['Wax'], parameters['Wya'], parameters['by'], parameters['ba']
vocab_size = by.shape[0]
n_a = Waa.shape[1]
# Step 1: Create the one-hot vector x for the first character (initializing the sequence generation).
x = np.zeros((vocab_size, 1))
# Step 1': Initialize a_prev as zeros
a_prev = np.zeros((n_a, 1))
# Create an empty list of indices, this is the list which will contain the list of indices of the characters to generate
indices = []
# Idx is a flag to detect a newline character, we initialize it to -1
idx = -1
# Loop over time-steps t. At each time-step, sample a character from a probability distribution and append
# its index to "indices". We'll stop if we reach 50 characters (which should be very unlikely with a well
# trained model), which helps debugging and prevents entering an infinite loop.
counter = 0
newline_character = char_to_ix['\n']
while (idx != newline_character and counter != 50):
# Step 2: Forward propagate x using the equations (1), (2) and (3)
a = np.tanh(np.dot(Wax, x) + np.dot(Waa, a_prev) + ba)
z = np.dot(Wya, a) + by
y = softmax(z)
# for grading purposes
np.random.seed(counter + seed)
# Step 3: Sample the index of a character within the vocabulary from the probability distribution y
idx = np.random.choice(vocab_size, p = y.ravel()) # 等价于np.random.choice([0,1,...,vocab_size-1], p = y.ravel()),
# 一维数组或者int型变量,如果是数组,就按照里面的范围来进行采样,如果是单个变量,则采用np.arange(a)的形式
# Append the index to "indices"
indices.append(idx)
# Step 4: Overwrite the input character as the one corresponding to the sampled index.
#每次生成的字符是下一个时间步的输入
x = np.zeros((vocab_size, 1))
x[idx] = 1
# Update "a_prev" to be "a"
a_prev = a
# for grading purposes
seed += 1
counter += 1
if (counter == 50):
indices.append(char_to_ix['\n'])
return indices
完整的代码以及数据集(dinos.txt)地址:https://github.com/tz28/deep-learning/blob/master/rnn.py
数据集:https://github.com/tz28/deep-learning/blob/master/dinos.txt
后记:因为实习的缘故,这篇博客拖了整整两个月才写完…,希望以后不要这样了。