计蒜客 Transport Ship(ACM-ICPC 2018 焦作赛区网络预赛 K)(多重背包装满的方案数)

There are NN different kinds of transport ships on the port. The i^{th}ith kind of ship can carry the weight of V[i]V[i] and the number of the i^{th}ith kind of ship is 2^{C[i]} - 12C[i]−1. How many different schemes there are if you want to use these ships to transport cargo with a total weight of SS?

It is required that each ship must be full-filled. Two schemes are considered to be the same if they use the same kinds of ships and the same number for each kind.

Input

The first line contains an integer T(1 \le T \le 20)T(1≤T≤20), which is the number of test cases.

For each test case:

The first line contains two integers: N(1 \le N \le 20), Q(1 \le Q \le 10000)N(1≤N≤20),Q(1≤Q≤10000), representing the number of kinds of ships and the number of queries.

For the next NN lines, each line contains two integers: V[i](1 \le V[i] \le 20), C[i](1 \le C[i] \le 20)V[i](1≤V[i]≤20),C[i](1≤C[i]≤20), representing the weight the i^{th}ith kind of ship can carry, and the number of the i^{th}ith kind of ship is 2^{C[i]} - 12C[i]−1.

For the next QQ lines, each line contains a single integer: S(1 \le S \le 10000)S(1≤S≤10000), representing the queried weight.

Output

For each query, output one line containing a single integer which represents the number of schemes for arranging ships. Since the answer may be very large, output the answer modulo 10000000071000000007.

样例输入复制

1
1 2
2 1
1
2

样例输出复制

0
1

题目来源

ACM-ICPC 2018 焦作赛区网络预赛

 

题意:多重背包装满的方案数

 

解题思路:直接上多重背包模板,然后改改递推方程即可。

 

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include
using namespace std;
typedef long long ll;
const int MAXN=2000005;
ll MOD = 1000000007;

ll W;
ll num[100005];
ll weight[100005];
ll dp[100005];
 
//01背包模板
void zero_one_pack(ll w){
    for(ll i=W;i>=w;i--)
        dp[i]=(dp[i]+dp[i-w])%MOD;//关键是这个转移,还是很好理解的
}
 
//多重背包模板
void multi_pack(ll w,ll n){
    //否则将该物品分解成几个小物品,然后用01背包去求解。详见背包九讲
    ll k=1;
    while(k

 

 

 

你可能感兴趣的:(————ACM相关————,——动态规划——,ACM,-,背包DP)