地址
方法一
"""
The idea here is to build a segment tree. Each node stores the left and right
endpoint of an interval and the sum of that interval. All of the leaves will store
elements of the array and each internal node will store sum of leaves under it.
Creating the tree takes O(n) time. Query and updates are both O(log n).
"""
#Segment tree node
class Node(object):
def __init__(self, start, end):
self.start = start
self.end = end
self.total = 0
self.left = None
self.right = None
class NumArray(object):
def __init__(self, nums):
"""
initialize your data structure here.
:type nums: List[int]
"""
#helper function to create the tree from input array
def createTree(nums, l, r):
#base case
if l > r:
return None
#leaf node
if l == r:
n = Node(l, r)
n.total = nums[l]
return n
mid = (l + r) // 2
root = Node(l, r)
#recursively build the Segment tree
root.left = createTree(nums, l, mid)
root.right = createTree(nums, mid+1, r)
#Total stores the sum of all leaves under root
#i.e. those elements lying between (start, end)
root.total = root.left.total + root.right.total
return root
self.root = createTree(nums, 0, len(nums)-1)
def update(self, i, val):
"""
:type i: int
:type val: int
:rtype: int
"""
#Helper function to update a value
def updateVal(root, i, val):
#Base case. The actual value will be updated in a leaf.
#The total is then propogated upwards
if root.start == root.end:
root.total = val
return val
mid = (root.start + root.end) // 2
#If the index is less than the mid, that leaf must be in the left subtree
if i <= mid:
updateVal(root.left, i, val)
#Otherwise, the right subtree
else:
updateVal(root.right, i, val)
#Propogate the changes after recursive call returns
root.total = root.left.total + root.right.total
return root.total
return updateVal(self.root, i, val)
def sumRange(self, i, j):
"""
sum of elements nums[i..j], inclusive.
:type i: int
:type j: int
:rtype: int
"""
#Helper function to calculate range sum
def rangeSum(root, i, j):
#If the range exactly matches the root, we already have the sum
if root.start == i and root.end == j:
return root.total
mid = (root.start + root.end) // 2
#If end of the range is less than the mid, the entire interval lies
#in the left subtree
if j <= mid:
return rangeSum(root.left, i, j)
#If start of the interval is greater than mid, the entire inteval lies
#in the right subtree
elif i >= mid + 1:
return rangeSum(root.right, i, j)
#Otherwise, the interval is split. So we calculate the sum recursively,
#by splitting the interval
else:
return rangeSum(root.left, i, mid) + rangeSum(root.right, mid+1, j)
return rangeSum(self.root, i, j)
# Your NumArray object will be instantiated and called as such:
# numArray = NumArray(nums)
# numArray.sumRange(0, 1)
# numArray.update(1, 10)
# numArray.sumRange(1, 2)
方法二
class NumArray(object):
def __init__(self, nums):
self.l = len(nums)
self.tree = [0]*self.l + nums
for i in range(self.l - 1, 0, -1):
self.tree[i] = self.tree[i<<1] + self.tree[i<<1|1]
def update(self, i, val):
n = self.l + i
self.tree[n] = val
while n > 1:
self.tree[n>>1] = self.tree[n] + self.tree[n^1]
n >>= 1
def sumRange(self, i, j):
m = self.l + i
n = self.l + j
res = 0
while m <= n:
if m & 1:
res += self.tree[m]
m += 1
m >>= 1
if n & 1 ==0:
res += self.tree[n]
n -= 1
n >>= 1
return res
方法三(与方法一相似,存储方式不同)
#define LOWER_BOUND(S,PRESUM) (lower_bound(S.begin(),S.end(),(PRESUM)) - S.begin() + 1)
#define UPPER_BOUND(S,PRESUM) (upper_bound(S.begin(),S.end(),(PRESUM)) - S.begin())
class Solution {
public:
int countRangeSum(vector
int n= nums.size();
int ret = 0;
vector
for(int i=1;i<=n;i++)S[i] = S[i-1] + nums[i-1];
sort(S.begin(),S.end());
S.erase(unique(S.begin(),S.end()),S.end());
int len = S.size();
value = vector
int64_t presum = 0;
add(LOWER_BOUND(S,presum),1,1,len);
for(int i=0;i
int64_t up = LOWER_BOUND(S,presum - upper);
int64_t low = UPPER_BOUND(S,presum - lower);
if(up <= low)
ret += query(up,low,1,1,len) ;
add(LOWER_BOUND(S,presum),1,1,len);
}
return ret;
}
private:
vector
void add(int v,int o,int L,int R){
if(L == R)value[o]++;
else{
int M = L + (R-L)/2;
if(v <= M) add(v,o*2,L,M);
else add(v,o*2+1,M+1,R);
value[o] = value[2*o] + value[2*o + 1];
}
}
int query(int ql,int qr,int o,int L,int R){
if(ql <= L && R <= qr) return value[o];
int ans = 0;
int M = L + (R-L)/2;
if(ql <= M) ans += query(ql,qr,2*o,L,M);
if(M < qr) ans += query(ql,qr,2*o+1,M+1,R);
return ans;
}
};
线段树理论上需要2*n大小的数组,但是实际为了防止溢出,需要 4*n的大小
作者:xu-yuan-shu
链接:https://leetcode-cn.com/problems/count-of-range-sum/solution/327qu-jian-he-de-ge-shu-ti-jie-zong-he-by-xu-yuan-/