MyDLNote-Enhancment : 弱光(low-light)图像增强、过亮图像(over-expsure)纠正算法文章收集

弱光图像、过亮图像增强算法文章收集

 

接下来几天要收集些过暗、过亮图像处理的论文了。

但一时又不能一下都找到,而且也不知道好坏(这里的好坏是指引用率了,其实能做出工作写成文章的都很好,尊重每一位学者的研究成果)。所以,这篇博客就持续更新着吧,关于文章的一些细节也会及时更新。

 

Low-Light

 

[2019] Attention-guided Low-light Image Enhancement

[2019] EnlightenGAN: Deep Light Enhancement without Paired Supervision

[2020 WACV] An Extended Exposure Fusion and its Application toSingle Image Contrast Enhancement

[2020 WACV] Supervised and Unsupervised Learning of Parameterized Color Enhancement

 

[2019 ACM MM] Kindling the Darkness:A Practical Low-light Image Enhancer

[2019 CVPR] Underexposed Photo Enhancement using Deep Illumination Estimation

[2019 CVPR]       Deep photo enhancer: Unpaired learning for image enhancement from photographs with GANs

[2019 TIP]            Low-light image enhancement via a deep hybrid network

[2019]                   Kindling the darkness: A practicallow-light image enhancer

[2018 CVPR] Deep Photo Enhancer: Unpaired Learning for Image Enhancement fromPhotographs with GANs

[2018 CVPR] Distort-and-Recover: Color Enhancement using Deep Reinforcement Learning

[2018 ACM TOG] Exposure: A White-Box Photo Post-Processing Framework

[2018 TIP] [github] Structure-Revealing Low-Light Image Enhancement via Robust Retinex Model 

[2018 BMVC] [github] MBLLEN: Low-light Image/Video Enhancement Using CNNs

[2018 BMVC]       Deep bilateral learning for real-time image enhancement

[32] [2018 CVPR]       Learning to see in the dark

[2018 ECCVW]   Perception-preserving convolutional networks for image enhancement on smart phones

[2018 CVPRW]    Wespe: weakly supervised photo enhancer for digital cameras

[2017 PR]             LLnet: A deep autoencoderapproach to natural low-light image enhancement

[2017 ACM TOG] Deep bilateral learning for real-time image enhancement

[2017 ICCV]        Dslr-quality photos on mobile devices with deep convolutional networks

 

数据集:

LOL [30] : Deep Retinex Decomposition for Low-Light Enhancement. 2018 British Machine Vision Conference. 

LIME [16] : LIME: Low-light Image Enhancement via Illumination Map Estimation. IEEE TIP (2017).

NPE [28] : Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE TIP (2013).

MEF [7] : Powerconstrained contrast enhancement for emissive displays based on histogram equalization. IEEE TIP (2012).

评价方法:

LOE [28] : Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE TIP (2013).

NIQE [23] : Making a completely blind image quality analyzer. IEEE Signal Processing Letters (2013).

对比方法:

BIMEF [33] : A Bio-Inspired Multi-Exposure Fusion Framework for Low-light Image Enhancement. arXiv (2017). (code)

SRIE [12] :A Weighted Variational Model for Simultaneous Reflectance and Illumination Estimation. 2016 CVPR. (code)

CRM [34] : A New Low-Light Image Enhancement Algorithm Using Camera Response Model. 2018 ICCVW.  (code)

Dong [11] : Fast efficient algorithm for enhancement of low lighting video. 2011 ICME. (code)

LIME [16] : LIME: Low-light Image Enhancement via Illumination Map Estimation. IEEE TIP (2017). (code)

MF [14] : A fusion-based enhancing method for weakly illuminated images. Signal Processing (2016). (code)

RRM [21] : Structure-Revealing Low-Light Image Enhancement Via Robust Retinex Model. IEEE TIP (2018). (code)

Retinex-Net [30] : Deep Retinex Decomposition for Low-Light Enhancement. 2018 British Machine Vision Conference. (code)

GLAD [29] : GLADNet: Low-Light Enhancement Network with Global Awareness. 2018 In IEEE International Conference on Automatic Face & Gesture Recognition. (code)

MSR [18] : A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE TIP (2012). (code)

NPE [28] : Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE TIP (2013). (code)

——————————————————————————

补充方法:

DeepUPE : Underexposed photo enhancement using deep illumination estimatio. 2019 CVPR. (code)

——————————————————————————

 

Over-Exposure Correcting

 

[2018 TIP] [github] Learning a Deep Single Image Contrast Enhancer from Multi-Exposure Images

Color Clipping and Over-exposure Correction

[2014 GlobalSIP] Correction of over-exposure using color channel correlations

[2014 ICCE(c)] Correction of the overexposed region in digital color image

[2013 SJIS] Recovering Over-/Underexposed Regions in Photographs

[2013 SP] Automatic local exposure correction using bright channel prior for under-exposed images

[2012 ECCV] Automatic exposure correction of consumer photographs

[2010 CVPR] Correcting Over-Exposure in Photographs

[持续更新。。。]

你可能感兴趣的:(计算机视觉)