【算法刷题】 最长单调子序列


子序列在原序列中可以是不连续的

动态规划求解:


//时间复杂度   n*n
//令c[i]表示:在a[0->i]中,当以a[i]为单调递增子序列最后一个元素时,所得最长单调递增子序列的长度。

状态转移方程:

c[0]=1;

c[i]=max{1,c[j]+1}    a[j]


int LongestIncr(int X[], int n, int c[], int line[]) 
{

	int path[MAX];
	//假设路径都是从自己开始,即元素i前的元素的编号为自己
	for (int i = 0; i < n;++i)
	{
		path[i] = i;
	}
	c[0] = 1;
	//状态转移
	for (int i = 1; i < n; ++i)
	{
		c[i] = 1;
		for (int j = 0; j < i; ++j)
		{
			//i加入子序列
			if (X[i]>X[j] && c[j]+1>c[i])
			{
				c[i] = c[j] + 1;
				path[i] = j;   //i前的序号值    
			}
		}

	}
	//得到最长子序列的长度值
	int nmax = 0;
	int end = -1;
	for (int i = 0; i < n; ++i)
	{
		if (c[i]>nmax)
		{
			nmax = c[i];
			end = i;
		}
	}

	int k = 1;
	line[0] = X[end];//倒序的...
	while (path[end]!=end)
	{
		line[k++] = X[path[end]];
		end = path[end];

	}
	return nmax;
}

int main()
{
	int n;
	int X[MAX];
	int c[MAX];
	int line[MAX];
	while (cin >> n, n != 0)
	{
		for (int i = 0; i < n; ++i)
		{
			cin >> X[i];
		}
		int max = LongestIncr(X, n, c, line);
		cout << "Longest Increasing Subsequence's Length: " << max << endl;
		for (int i = max - 1; i >= 0; --i)
		{
			cout << line[i];
		}
		cout << endl;
	}
}

你可能感兴趣的:(算法题)