- 【C++】动态规划从入门到精通
諰.
动态规划c++
一、动态规划基础概念详解什么是动态规划动态规划(DynamicProgramming,DP)是一种通过将复杂问题分解为重叠子问题,并存储子问题解以避免重复计算的优化算法。它适用于具有以下两个关键性质的问题:最优子结构:问题的最优解包含子问题的最优解重叠子问题:不同决策序列会重复求解相同的子问题下面用一些例子(由浅入深)了解动态规划1.1斐波那契数列递归实现解析intfib(intn){if(n>d
- 使用CPLEX进行C++优化建模:从入门到精通
m0_57781768
c++java开发语言
使用CPLEX进行C++优化建模:从入门到精通前言CPLEX是IBM开发的一款强大的数学编程求解器,广泛应用于线性规划(LP)、混合整数规划(MIP)和约束规划(CP)等领域。它具有高效的求解能力和灵活的建模功能,是优化领域的重要工具之一。本文将详细介绍如何在C++中使用CPLEX进行优化建模,从基本概念到高级应用,结合具体实例展示其强大功能。通过这篇文章,读者将能够深入理解CPLEX的使用方法,
- python之gmsh划分网格
老歌老听老掉牙
python有限元分析python开发语言gmsh划分网格
Gmsh(GeometryModelingandMeshingSuite)是一个开源的三维有限元网格生成器,它集成了内置的CAD引擎和后处理器。Gmsh的设计目标是提供一个快速、轻量级且用户友好的网格工具,同时具备参数化输入和高级可视化能力。Gmsh围绕几何(geometry)、网格(mesh)、求解器(solver)和后处理(post-processing)四个模块构建,用户可以通过图形用户界面
- 求解一次最佳平方逼近多项式
F_D_Z
数理数值分析一次最佳平方逼近多项式
例设f(x)=1+x2f(x)=\sqrt{1+x^2}f(x)=1+x2,求[0,1][0,1][0,1]上的一个一次最佳平方逼近多项式。解:d0=∫011+x2dx=12ln(1+2)+22≈1.147d_0=\int_{0}^{1}\sqrt{1+x^2}dx=\frac{1}{2}\ln(1+\sqrt{2})+\frac{\sqrt{2}}{2}\approx1.147d0=∫011+
- Tree of Thought Prompting(思维树提示)
大数据追光猿
大模型人工智能大数据深度学习语言模型计算机视觉
TreeofThoughtPrompting(思维树提示)是一种新兴的提示工程技术,旨在通过模拟人类解决问题时的多步推理过程,提升大型语言模型(LLM)在复杂任务中的表现。与传统的线性提示方法不同,思维树提示将问题分解为多个可能的推理路径,并以树状结构探索这些路径,从而找到最优解或生成更高质量的结果。这种方法特别适用于需要多步推理的任务,例如数学问题求解、逻辑推理、规划和创造性写作等场景。它结合了
- Hyperlane:Rust 生态中的轻量级高性能 HTTP 服务器库,助力现代 Web 开发
LTPP
rusthttp服务器开发语言后端前端面试
Hyperlane:Rust生态中的轻量级高性能HTTP服务器库,助力现代Web开发在Rust生态系统中,Hyperlane是一个备受关注的HTTP服务器库,以其轻量级、高性能和易用性脱颖而出。无论你是想快速构建一个高效的Web服务,还是需要支持实时通信的现代应用,Hyperlane都能成为你的理想选择。它不仅简化了网络服务的开发,还提供了强大的功能支持,如HTTP请求解析、响应构建、TCP通信,
- 【机器学习】主成分分析法(PCA)
若兰幽竹
机器学习机器学习信息可视化人工智能
【机器学习】主成分分析法(PCA)一、摘要二、主成分分析的基本概念三、主成分分析的数学模型五、主成分分析法目标函数公式推导(`梯度上升法`求解目标函数)六、梯度上升法求解目标函数第一个主成分七、求解前n个主成分及PCA在数据预处理中的处理步骤(后续实现)一、摘要本文主要讲述了主成分分析法(PCA)的原理和应用。PCA通过选择最重要的特征,将高维数据映射到低维空间,同时保持数据间的关系,实现降维和去
- 【优化选址】基于多目标遗传NSGAII、多目标免疫遗传算法求解考虑成本、救援时间和可靠性的海上救援选址多目标优化问题研究(Matlab代码实现)
荔枝科研社
matlab数据结构算法
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述基于多目标遗传NSGAII、多目标免疫遗传算法求解考虑成本、救援时间和可靠性的海上救援选址多目标优化问题研究一、引言二、海上救援选址多目标优化问题分析(一)成本因素(二)救援时间因素(三)可靠性因素三、多目标遗传NSGAII算法(一)算法原理(二)在
- 自动驾驶---打造自动驾驶系统之导航模块开发(三)
智能汽车人
从零打造自动驾驶算法仿真系统自动驾驶人工智能机器学习
各位读者朋友,大家好。本次打造的自动驾驶系统仿真系统,涉及感知,预测,规控等多个模块(以规控算法为主,包括Polynomial预测,MCTS决策算法,通行走廊Corridor构建,QP/CILQR轨迹生成求解器,LQR+PID的控制器等),同时也支持其它相关规控算法的扩展(部署&开发自身感兴趣的算法),非常便捷。笔者在该系列中开发的规控算法主要依据专栏《自动驾驶Planning决策规划》中的章节逐
- 蓝桥杯Python赛道备赛——Day6:算术(二)(数学问题)
SKY YEAM
蓝桥杯备赛蓝桥杯python职场和发展
本期博客是蓝桥杯备赛中算术(数学问题)的第二期,包括:快速幂算法、逆元(模意义下的倒数)、组合数计算和排列数计算。每一种数学问题都在给出定义的同时,给出了其求解方法的示例代码,以供低年级师弟师妹们学习和练习。前序知识:(1)Python基础语法算术(二)(数学问题)一、快速幂算法二、逆元(模意义下的倒数)三、组合数计算四、排列数计算一、快速幂算法1.定义:快速计算大指数幂的算法。2.算法原理:二进
- 蓝桥杯Python赛道备赛——Day7:动态规划(基础)
SKY YEAM
蓝桥杯备赛蓝桥杯python动态规划
本博客就蓝桥杯中所涉及的动态规划基础问题进行讲解,包括:递推、记忆化搜索、最长公共子序列(LCS)和最长上升子序列(LIS)。每一种动态规划问题都在给出定义的同时,给出了其求解方法的示例代码,以供低年级师弟师妹们学习和练习。前序知识:(1)Python基础语法动态规划(基础)一、递推(迭代法)二、记忆化搜索(递归+缓存)三、最长公共子序列(LCS)四、最长上升子序列(LIS)一、递推(迭代法)定义
- ### 深入解析:如何构建三角形并求解自顶向下的最小路径和 的基础—(构建三角形)
小学仔
leetcode动态规划java算法
####一、问题分析给定一个三角形`triangle`,要求找出自顶向下的最小路径和。每次移动只能到下一行相邻的节点(当前下标`i`或`i+1`)。例如,三角形如下时:```2346574183```####二、代码框架搭建#####1.输入处理与三角形构建```javaScannersc=newScanner(System.in);List>triangle=newArrayListrow=ne
- 蓝桥杯Python赛道备赛——Day8:动态规划(基础)案例分析
SKY YEAM
蓝桥杯备赛蓝桥杯python动态规划
本博客就上一期中讨论的蓝桥杯动态规划基础问题(包括:递推、记忆化搜索、最长公共子序列和最长上升子序列),给出了六个常见的案例问题。每一个问题都给出了其求解方法的示例代码,以供低年级师弟师妹们学习和练习。如有不懂,欢迎在评论区提问。前序知识:(1)Python基础语法(2)Day1:基础算法(3)Day7:动态规划(基础)动态规划(基础)案例分析一、递推应用:爬楼梯问题二、递推应用:零钱兑换三、记忆
- 23章12节:抽样的蒙特卡洛方法
DAT|R科学与人工智能
用R探索医药数据科学r-4.2.1开发语言数据库人工智能r
蒙特卡洛方法作为一种基于随机抽样的数值计算技术,在工程、金融、统计、物理等众多领域中得到了广泛应用。该方法通过对大量随机数的模拟,来解决那些难以解析求解的问题。在实际问题中,常常需要从一个复杂分布中抽取样本,而传统的直接抽样方法可能难以实现。为了解决这一问题,接受‐拒绝抽样方法应运而生。本文旨在介绍如何利用R语言实现蒙特卡洛方法,特别是如何通过接受‐拒绝抽样从已知分布中抽取样本。文章以参数为(3,
- 代码随想录算法训练营第一天 | LeetCode 704、27
Bingjiaokong
随想录刷题算法leetcode
文章目录前言一、LeetCode7041.闭区间2.开区间二、LeetCode271.暴力求解2.快慢指针总结前言LeetCode题目:704、27Takeaway:二分法边界处理、快慢指针一、LeetCode7041.闭区间定义target是在一个在左闭右闭的区间里,也就是[left,right]#includeclassSolution{public:intsearch(vector&nums
- 关于非线性优化小记
文弱_书生
乱七八糟算法
非线性优化(NonlinearOptimization)1.什么是非线性优化?非线性优化是指目标函数或约束条件中至少有一个是非线性的优化问题。它广泛应用于工程、经济、人工智能、机器学习等领域,用于求解最优解的问题。非线性优化通常可以表示为以下数学形式:minxf(x)或maxxf(x)\min_{x}f(x)\quad\text{或}\quad\max_{x}f(x)xminf(x)或xmax
- 使用 Hyperlane 框架的 WebSocket 功能
LTPP
websocket网络协议网络rusthttp服务器前端
使用Hyperlane框架的WebSocket功能概述hyperlane是一个轻量级且高性能的RustHTTP服务器库,支持HTTP请求解析、响应构建、TCP通信,同时也支持WebSocket和SSE等实时通信协议。hyperlane框架内置了WebSocket支持,能够自动处理协议升级,并支持请求中间件、路由处理和响应中间件。在本篇博客中,我们将介绍如何使用hyperlane框架实现WebSoc
- LeetCode215.数组中的第K个最大元素 java使用小顶堆求解
patientany
java开发语言
JAVA实现小顶堆手撕小顶堆定义堆中的成员变量提供构造方法建堆下潜交换堆的尾部添加元素上浮获取堆顶元素替换堆顶元素删除指定元素删除堆顶元素回到题目具体步骤上代码手撕小顶堆在java中实现小顶堆定义堆中的成员变量这里首先先定义堆中的数据,在这里我使用了整数数组表示整个堆。size表示堆的大小,默认也就是数组的长度。int[]array;intsize;提供构造方法对于堆的初始化,由传进来的数组实现对
- XGBoost算法的相关知识
VariableX
机器学习基础算法机器学习
文章目录背景定义损失函数(1)原始目标函数Obj(2)原始目标函数Obj的泰勒展开(3)具体化目标函数的泰勒展开细节(4)求解目标函数中的wjw_jwj最优切分点算法基于分桶的划分策略正则化模型复杂度Shrinkage特征采样和样本采样EarlyStopping缺失值处理优缺点总结背景讲XGBoost之前,先引入一个实际问题,即预测一家人每个人玩游戏的意愿值:如果我们用XGBoost解决这个问题,
- MATLAB算法实战应用案例精讲-【深度学习】归一化
林聪木
matlab算法深度学习
目录为什么要做特征归一化/标准化?常用featurescaling方法计算方式上对比分析featurescaling需要还是不需要什么时候需要featurescaling?什么时候不需要FeatureScaling?归一化基础知识点1.什么是归一化2.为什么要归一化3.为什么归一化能提高求解最优解的速度4.归一化有哪些类型5.不同归一化的使用条件6.归一化和标准化的联系与区别层归一化综述提出背景概
- 小白零基础学数学建模系列-Day1-数学建模入门介绍与案例实践
川川菜鸟
数学建模小白到精通系列数学建模
目录一、数学建模的定义和重要性1.1什么是数学建模?1.2数学建模的重要性二、常见的数学建模方法概述2.1线性模型和案例2.1.1特点2.1.2应用2.1.3问题2.1.4模型2.1.5数学表达式2.1.6求解算法2.2非线性模型和案例2.2.1特点2.2.2应用2.2.3问题2.2.4模型2.2.5数学表达式2.2.6算法2.3动态模型2.3.1特点2.3.2应用2.3.3常见问题2.3.4模型
- 机器学习中的梯度到底是什么?(chat-gpt问答)
湫怿
机器学习gpt人工智能梯度
1、梯度是对损失函数求导吗?是的,梯度是对损失函数(或目标函数)求导数值化后的结果。梯度告诉我们目标函数在某个点上的方向性和变化率,这些信息是优化算法推进参数评估和更新的重要指标。在机器学习中,我们通过不断调整参数,使目标函数达到最小值,从而实现模型的训练和学习。2、为什么梯度要求偏导来求解?梯度是一个向量,它的方向指向函数值增加最快的方向,其大小表示函数值的变化率。为了确定梯度的方向和大小,需要
- 强化学习-Chapter2-贝尔曼方程
Rsbs
算法机器学习概率论
强化学习-Chapter2-贝尔曼方程贝尔曼方程推导继续展开贝尔曼方程的矩阵形式状态值的求解动作价值函数与状态价值函数的关系贝尔曼方程推导Vπ(s)=E[Gt∣St=s]=E[rt+1+(γrt+2+…)∣St=s]=E[rt+1+γGt+1∣St=s]=∑a∈Aπ(s,a)∑s′∈SPs→s′a⋅(Rs→s′a+γE[Gt+1∣St+1=s′])=∑a∈Aπ(s,a)∑s′∈SPs→s′a⋅(R
- dp背包问题
|CXHAO|
c++
有NN件物品和一个容量是VV的背包。每件物品只能使用一次。第ii件物品的体积是vivi,价值是wiwi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,VN,V,用空格隔开,分别表示物品数量和背包容积。接下来有NN行,每行两个整数vi,wivi,wi,用空格隔开,分别表示第ii件物品的体积和价值。输出格式输出一个整数,表示最大价值
- 数学建模之数学模型-3:动态规划
^ω^宇博
数学模型数学建模动态规划算法
文章目录动态规划基本概念阶段状态决策策略状态转移方程指标函数最优指标函数动态规划的求解前向算法后向算法二者比较应用案例一种中文分词的动态规划模型摘要引言动态规划的分词模型问题的数学描述消除状态的后效性选择优化条件算法描述和计算实例算法的效率分析和评价结束语参考文献动态规划基本概念一个多阶段决策过程最优化问题的动态规划模型包括以下666个要素:以下是对动态规划中阶段、状态、决策、策略、状态转移方程、
- 贪心算法在背包问题上的运用(Python)
MATLAB卡尔曼
智能算法的MATLAB实现贪心算法python算法
背包问题有n个物品,它们有各自的体积和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?这就是典型的背包问题(又称为0-1背包问题),也是具体的、没有经过任何延伸的背包问题模型。背包问题的传统求解方法较为复杂,现定义有一个可以载重为8kg的背包,另外还有4个物品,物品的价值和质量数据如下表,不考虑背包的容量。4个物品的总质量大于8kg,所以要想在有限载重的背包携带更多质量的物品,
- 【动态规划】任务分配问题
精神小猿
动态规划
题目来自贵大OJ题目描述:给定n个零件需要的加工时间,分配到两台机床上加工,使得两台机床完成加工的时间尽可能同步。设计一个穷举搜索算法求解该问题。例如,有3个零件,加工时间分别为2、5和3,那么把加工时间为2、3的两个零件分配到一台机床上加工,把加工时间为5的零件分配到另一台机床上加工,两台机床能同时完工。输入描述:每组数据的第一行是一个整数n(1#includeusingnamespacestd
- PCL 点云OBB包围盒(二)
大鱼BIGFISH
点云进阶C++PCL点云OBB包围盒
文章目录一、简介二、实现步骤二、实现代码三、实现效果参考资料一、简介包围盒是一种求解离散点集最优包围空间的算法,基本思想是用体积稍大且特性简单的几何体(称为包围盒)来近似地代替复杂的几何对象。(来源于百度)常用的求解包围盒的算法主要有AABB和OOB算法,但AABB算法容易受到物体朝向的影响,产生较大的空隙,因此本文将以OOB算法思想实现最小包围盒的求取。包围盒的应用有很多,如机械上的碰撞测试、物
- PINN物理信息网络 | 基于物理信息神经网络PINN求解Burger方程
算法如诗
物理信息网络(PINN)神经网络人工智能深度学习物理信息网络
基于物理信息神经网络(PINN)求解Burger方程的研究背景源于对非线性偏微分方程(PDE)求解方法的不断探索和改进。传统的数值方法,如有限差分法和有限元法,通常需要进行网格离散化和迭代求解,对于复杂的非线性问题计算成本较高。因此,研究人员开始探索基于机器学习和神经网络的新方法来求解PDEs。神经网络在近年来取得了显著的发展,能够通过学习大量数据来建立输入和输出之间的复杂映射关系。然而,将神经网
- PINN物理信息网络 | 利用物理信息神经网络进行流体动力学建模
算法如诗
物理信息网络(PINN)神经网络机器学习人工智能流体动力学建模PINN物理信息网络
背景物理信息神经网络(Physics-InformedNeuralNetworks,PINN)是一种结合了神经网络和物理方程的方法,用于建模和求解物理问题。传统的基于物理方程的数值方法在处理复杂的非线性偏微分方程时可能面临数值稳定性、高计算复杂度和网格依赖性等问题。而PINN作为一种数据驱动的方法,通过使用神经网络来近似物理方程,能够有效地解决这些问题。在流体动力学建模中,PINN可以应用于求解N
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache