@UPC8377 @ACM-ICPC-2018-ASIA YOKAHAMA REGIONAL D: Playoff (DFS)

Playoff

时间限制: 5 Sec  内存限制: 128 MB
提交: 56  解决: 13
[提交] [状态] [讨论版] [命题人:admin]

题目描述

The Minato Mirai Football Association hosts its annual championship as a single round-robin tournament, in which each team plays a single match against all the others. Unlike many other round-robin tournaments of football, matches never result in a draw in this tournament. When the regular time match is a tie, overtime is played, and, when it is a tie again, a penalty shootout is played to decide the winner.
If two or more teams won the most number of matches in the round-robin, a playoff is conducted among them to decide the champion. However, if the number of teams is an odd number, it is possible that all the teams may have the same number of wins and losses, in which case all the teams participate in the playoff, called a "full playoff" here.
Now, some of the tournament matches have already been played and we know their results. Whether or not a full playoff will be required may depend on the results of the remaining matches. Write a program that computes the number of win/loss combination patterns of the remaining matches that lead to a full playoff.
The first datatset of the Sample Input represents the results of the first three matches in a round-robin tournament of five teams, shown in the following table. In the table, gray cells indicate the matches not played yet.

In this case, all the teams win the same number of matches with only two win/loss combination patterns of the remaining matches, which lead to a full playoff, as shown below. In the two tables, the differences are indicated in light yellow.

 

输入

The input consists of multiple datasets, each in the following format.
n
m
x1 y1 
... 
xm ym 
n is an odd integer, 3, 5, 7, or 9, indicating the number of teams participating in the tournament. m is a positive integer less than n(n−1)/2, which is the number of matches already finished. xi and yi give the result of the i-th match that has already taken place, indicating that team xi defeated team yi. Each of xi and yi is an integer 1 through n which indicates the team number. No team plays against itself, that is, for any i, xi ≠ yi. The match result of the same team pair appears at most once. That is, if i ≠ j, then (xi,yi) ≠ (xj,yj) and (xi,yi) ≠ (yj,xj) hold.

The end of the input is indicated by a line containing a zero. The number of datasets does not exceed 100.

输出

For each dataset, output a single line containing one integer which indicates the number of possible future win/loss patterns that a full playoff will be required.

样例输入

5
3
3 2
4 1
5 1
3
1
1 2
3
2
1 2
3 2
5
4
4 1
4 2
5 1
5 2
5
3
4 1
4 2
5 1
5
4
3 2
4 1
5 1
5 2
9
11
6 1
6 4
7 2
7 3
7 4
8 2
8 3
8 4
9 1
9 3
9 5
9
10
6 1
6 4
7 2
7 3
7 4
8 2
8 3
8 4
9 1
9 3
5
6
4 3
2 1
5 1
2 4
1 3
2 3
9
1
1 2
0

样例输出

2
1
0
0
1
0
0
16
0
1615040

 

[吐槽]:    做题的时候 UPC 没有提交标程 ,所以 显示的  时间限制是 1s,.....  推出要用DFS,但是 感觉 复杂度要超的感觉,

1s 内 跑不完啊,   果然 赛后  , 显示 时间 5s / / QAQ/

 

[题意]:  给定  n 个人 (奇数)  比赛 ,   已知 m 个  比赛 状态,  现在 求  使得 所有人 的 输赢 次数 一致,  的比赛填法.

说白了就是 把  win 和 lose 填入表格,  x -y  是 对应的,  使每个人的 win  的次数 和 lose 的次数 是一样的.

 

[思路] 

dfs 呗,  3,5,9,  每个人 最终一定是 1,2,4 

然后 安装 行 扫描,  行结束扫描 列,

相当于 dfs 枚举了,  暴力 -- - 

 注意 自己 和自己 不能打 

 

注意:  刚刚UPC 又 改时间限制了, 卡在2s.   然后 3s  挂掉了...    无Fuck言,.. 

@UPC8377 @ACM-ICPC-2018-ASIA YOKAHAMA REGIONAL D: Playoff (DFS)_第1张图片

时间 : 3000ms

[代码]


#include 
#include 

#define rep(i,a,n) for(int i = a ;i <=n;i++)
#define per(i,a,n) for(int i =n;i>=a;i--)

typedef long long ll;
using namespace std;
const int maxn =1e5+10;
const int mod = 1e9+7;
const int inf = 0x3f3f3f3f;

int mp[10][10];
int win[10];
int t,n,m ;
int ans ;
void dfs(int x,int y)
{
	if( x== n && y == n)
	{
		ans ++;
		return ;
	}
	if( y == n )
	{
		x ++;
		y = 1;
	}
	if( x == y || mp[x][y] !=0) // itself or has been it 
		dfs(x,y+1);
	else
	{
		if( win[x] < t)
		{
			mp[x][y] = 1;
			mp[y][x] = -1;
			win[x] ++;
			dfs(x,y+1);
			mp[x][y] = 0;
			mp[y][x] = 0;
			win[x]--;
		}
		if( win[y] < t)
		{
			mp[x][y] = -1;
			mp[y][x] = 1;
			win[y] ++;
			dfs(x,y+1);
			mp[x][y] = 0;
			mp[y][x] = 0;
			win[y]--;	
		}
	}
}
int main()
{
	while(~scanf("%d %d",&n,&m))
	{
		if(n == 0) break;
		memset(mp,0,sizeof(mp));
		memset(win,0,sizeof(win));
		int x,y;
		ans = 0;
		for(int i =1; i<=m;i++)
		{
			scanf("%d %d",&x,&y);
			mp[x][y] = 1;
			mp[y][x] = -1;
			win[x] ++;
		}
		int flag = 0;
		t = (n-1)/2;
		rep(i,1,n)
		{
			if(win[i] > t )
			{
				printf("0\n");
				flag = 1;
				break;
			}
		}
		if( flag == 1)
			continue;
		dfs(1,1);
		printf("%d\n",ans);
	}
	return 0;
}

 

修改算法后,  时间 260ms

既然是对称的 , 那么  只扫 三角形就可以了, 扫一半,   增加一个lose  数组,   用mp  标记.

 

代码:

 
#include 
#include 
 
#define rep(i,a,n) for(int i = a ;i <=n;i++)
#define per(i,a,n) for(int i =n;i>=a;i--)
 
typedef long long ll;
using namespace std;
const int maxn =1e5+10;
const int mod = 1e9+7;
const int inf = 0x3f3f3f3f;
int mp[10][10];
int win[10];
int lose[10];
int t,n,m ;
int ans ;
void dfs(int x,int y)
{
	if( x == n )
	{
		ans ++;
		return ;
	}
	if( y == x )
	{
		x ++;
		y = 1;
	}
	if( mp[x][y] )
	{
		dfs(x,y+1);
	}
	else
	{
		if( win[x] < t && lose[y] < t )
		{
			win[x] ++;
			lose[y]++; 
			dfs(x,y+1);
			win[x]--;
			lose[y]--;
		}
		if( win[y] < t && lose[x] < t)
		{
			win[y] ++;
			lose[x] ++;
			dfs(x,y+1);
			win[y]--;	
			lose[x]--;
		}		
	}

}
int main()
{
	while(~scanf("%d %d",&n,&m))
	{
		if(n == 0) break;
		memset(win,0,sizeof(win));
		memset(lose,0,sizeof(lose));
		memset(mp,0,sizeof(mp));
		int x,y;
		ans = 0;
		for(int i =1; i<=m;i++)
		{
			scanf("%d %d",&x,&y);
			mp[x][y] = 1;
			mp[y][x] = 1;
			win[x] ++;
			lose[y]++;
		}
		int flag = 0;
		t = (n-1)/2;
		rep(i,1,n)
		{
			if(win[i] > t || lose[i] > t )
			{
				printf("0\n");
				flag = 1;
				break;
			}
		}
		if( flag == 1)
			continue;
		dfs(2,1);
		printf("%d\n",ans);
	}
	return 0;
}

 

你可能感兴趣的:(***BFS&&DFS***,ACM进阶之路)