- python机器学习算法--贝叶斯算法
在下小天n
机器学习python机器学习算法
1.贝叶斯定理在20世纪60年代初就引入到文字信息检索中,仍然是文字分类的一种热门(基准)方法。文字分类是以词频为特征判断文件所属类型或其他(如垃圾邮件、合法性、新闻分类等)的问题。原理牵涉到概率论的问题,不在详细说明。sklearn.naive_bayes.GaussianNB(priors=None,var_smoothing=1e-09)#Bayes函数·priors:矩阵,shape=[n
- 【概率论】理解贝叶斯(Bayes)公式:为什么疾病检测呈阳性,得这种病的概率却不高?
seh_sjlj
概率论概率论学习数学经验分享
先说结论:因为假阳性的人数相比于真阳性太多了。具体是怎么回事呢?咱们慢慢分析。文章目录一、贝叶斯公式二、典例分析三、贝叶斯公式的本质思考(摘自教材)一、贝叶斯公式定理1(贝叶斯公式)设有事件A,BA,BA,B,P(A)>0P(A)>0P(A)>0,P(B)>0P(B)>0P(B)>0,则P(B∣A)=P(B)P(A∣B)P(A)P(B|A)=\frac{P(B)P(A|B)}{P(A)}P(B∣A
- Auto-Encoding Variational Bayes(VAE)粗浅的理解
Longlongaaago
机器学习深度学习机器学习
Auto-EncodingVariationalBayes(VAE)粗浅的理解VAE作为生成模型的一种,能够通过改变latentspace来生成和训练时不一样的样本。而这种能力,Auto-Encoder(AE)是做不到的,因为如果不对latentspace的生成进行约束,仅仅是对输出的结果进行约束。那么最终,对于不同的样本输入,得到的latentspace是完全不同的,这会产生什么问题呢?就是这个
- 8、python多项式贝叶斯文本分类(完整)
UP Lee
数据挖掘实战多项式贝叶斯文章分类
1、贝叶斯定理(BayesTheorem)朴素贝叶斯分类(NaiveBayesClassifier)贝叶斯分类算法,是统计学的一种分类方法,它是利用贝叶斯定理的概率统计知识,对离散型的数据进行分类的算法2、贝叶斯算法的类型sklearn包naive_bayes模块GaussianNB高斯贝叶斯BernoulliNB伯努利贝叶斯MultionmialNB多项式贝叶斯(需要知道具体每个特征的数值大小)
- 00005. 在朴素Bayes模型中,为什么需要Laplace平滑?
deBroglie
统计学上,在计算实例的概率时,如果某个量x,在观察样本库(训练集)中没有出现过,会导致整个实例的概率结果是0。然而只因为在以前的有限的训练数据集中没见到过一件事,就估计这个事件的概率为零,这明显是不合理的。为了解决零概率的问题,法国数学家拉普拉斯最早提出用加1的方法估计没有出现过的现象的概率,所以加法平滑也叫做拉普拉斯平滑。假定训练样本很大时,每个分量的计数加造成的估计概率变化可以忽略不计,但可以
- 基于python旅游景点评论数据分析系统+可视化+LDA主题分析+NLP情感分析+Bayes评论分类 计算机毕业设计✅
源码之家
biyesheji0001biyesheji0002毕业设计python自然语言处理分类毕业设计LDAnlp评论数据
博主介绍:✌全网粉丝10W+,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业毕业设计项目实战6年之久,选择我们就是选择放心、选择安心毕业✌感兴趣的可以先收藏起来,点赞、关注不迷路✌毕业设计:2023-2024年计算机毕业设计1000套(建议收藏)毕业设计:2023-2024年最新最全计算机专业毕业设计选题汇总1、项目介绍项目技术说明:python语言、Flask框架、MySQL
- 机器学习超参数优化算法(贝叶斯优化)
恒c
机器学习算法人工智能随机森林
文章目录贝叶斯优化算法原理贝叶斯优化的实现(三种方法均有代码实现)基于Bayes_opt实现GP优化基于HyperOpt实现TPE优化基于Optuna实现多种贝叶斯优化贝叶斯优化算法原理在贝叶斯优化的数学过程当中,我们主要执行以下几个步骤:1定义需要估计的f(x)f(x)f(x)以及xxx的定义域2取出有限的n个xxx上的值,求解出这些xxx对应的f(x)f(x)f(x)(求解观测值)3根据有限的
- NLP——数学基础
晴晴_Amanda
自然语言处理
文章目录概率论基础概率(probability)最大似然估计(maximumlikelihoodestimation)条件概率(conditionalprobability)全概率公式(fullprobability)贝叶斯公式(Bayes’theorem)贝叶斯决策理论(Bayesiandecisiontheory)最小错误率贝叶斯决策最小风险贝叶斯决策二项式分布(binomialdistrib
- (4)【Python数据分析进阶】Machine-Learning模型与算法应用-回归、分类模型汇总
代码骑士
#python数据分析回归
线性回归、逻辑回归算法应用请参考:https://codeknight.blog.csdn.net/article/details/135693621https://codeknight.blog.csdn.net/article/details/135693621本篇主要介绍决策树、随机森林、KNN、SVM、Bayes等有监督算法以及无监督的聚类算法和应用PCA对数据进行降维的算法的基本原理及应
- NLP学习笔记18-朴素贝叶斯(Naive Bayes)
bohu83
NLP朴素贝叶斯算法垃圾邮件先验概率NLP
一序本文属于贪心NLP学习笔记系列。本篇介绍朴素贝叶斯。二朴素贝叶斯2.1问题引出垃圾邮件里经常出现“广告”,“购买”,“产品”这些单词。也就是p(“广告”|垃圾)>p(“广告”|正常),p(“购买”|垃圾)>p(“购买”|正常)……这符合我们判断习惯。那么这些概率怎么计算?具体案例1如下:下图计算了购买在垃圾邮件和正常邮件里出现的概率。根据假设:正常邮件的单词总数为24*10,垃圾邮件为:12*
- 朴素贝叶斯(Naive Bayes)模型简介
Carl-Xie
机器学习朴素贝叶斯NaiveBayes文本分类nlp
朴素贝叶斯模型是一个简单却很重要的模型,在文本分类中,由于它出奇的简单实现和令人惊讶的表现,因此实际应用中,它都值得是第一个尝试的基准模型。本文接下来将从文本分类这个具体应用中介绍朴素贝叶斯模型。文本分类问题在文本分类中,我们面临的问题是给定一个文本x⃗=[x1,x2,...,xi,...,xn],其中xi从原始文本抽出来的一个特征,可以是单个单词或者是一个ngram特征,或者是一个正则表达式特征
- 【NLP冲吖~】一、朴素贝叶斯(Naive Bayes)
漂泊老猫
自然语言处理NLP自然语言处理人工智能机器学习
0、朴素贝叶斯法朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入输出的联合概率分布,然后基于此模型,对给定的输入xxx,利用贝叶斯定理求出后验概率最大的输出yyy。朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。从数学角度,定义分类问题如下:已知集合C=y1,y2,...,ynC={y_1,y_2,...,y_n}C=y1
- Auto-Encoding Variational Bayes整理
易之道
机器学习机器学习深度学习
Auto-EncodingVariationalBayesHowcanweperformefficientinferenceandlearningindirectedprobabilisticmodels,inthepresenceofcontinuouslatentvariableswithintractableposteriordistributions,andlargedatasets?in
- python电商评论数据采集分析可视化系统 Flask框架 NLP情感分析 LDA主题分析 Bayes评论分类(源码) ✅
q_3375686806
biyesheji0002biyesheji0001毕业设计pythonflask自然语言处理机器学习评论数据NLP情感分析
大数据毕业设计:Python招聘数据采集分析可视化系统✅毕业设计:2023-2024年计算机专业毕业设计选题汇总(建议收藏)毕业设计:2023-2024年最新最全计算机专业毕设选题推荐汇总感兴趣的可以先收藏起来,点赞、关注不迷路,大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助同学们顺利毕业。1、项目介绍项目技术说明:python语言、Flask框架、MySQL数据库、Ech
- NLP深入学习(四):贝叶斯算法详解及分类/拼写检查用法
Smaller、FL
NLP算法自然语言处理学习nlp
文章目录0.引言1.什么是贝叶斯定理2.贝叶斯常见实用场景3.贝叶斯用于垃圾邮件分类4.基于贝叶斯算法实现拼写检查器5.参考0.引言前情提要:《NLP深入学习(一):jieba工具包介绍》《NLP深入学习(二):nltk工具包介绍》《NLP深入学习(三):TF-IDF详解以及文本分类/聚类用法》1.什么是贝叶斯定理贝叶斯算法是基于贝叶斯(Bayes)定理的一类统计推断方法,主要用于分类和预测问题。
- 1.6 全概率公式与Bayes公式
blueband21c
1.6全概率公式与Bayes公式例:一所学校里面有60%的男生,40%的女生。男生总是穿长裤,女生则一半穿长裤一半穿裙子。有了这些信息之后我们可以容易地计算“随机选取一个学生,他(她)穿长裤的概率和穿裙子的概率是多大”,这个就是前面说的“正向概率”的计算。然而,假设你走在校园中,迎面走来一个穿长裤的学生(很不幸的是你高度近似,你只看得见他(她)穿的是否长裤,而无法确定他(她)的性别),你能够推断出
- Bayes贝叶斯识别Spam Email垃圾邮件
取名真难.
机器学习机器学习人工智能深度学习python
目录介绍:一、GaussianNaiveBayes(连续型变量)1.1数据处理1.2建模1.3cross_val_score函数评估1.4classification_report函数评估1.5classification_report函数和cross_val_score函数的区别二、MultinomialNaiveBayes(离散型变量)2.1数据处理2.2建模2.3CountVectorize
- 自然语言处理算法回归算法和分类算法
兔兔爱学习兔兔爱学习
自然语言处理
人工智能学习算法分类纯算法类1.回归算法回归分析是在一系列的已知或能通过获取的自变量与因变量之间的相关关系的基础上,建立变量之间的回归方程,把回归方程作为算法模型,通过其来实现对新变量得出因变量的关系。回归其实就是一个名词,没有特别的含义回归的类型有哪些线性回归曲线回归二元logistic回归多元logistic回归最小二乘法梯度2.分类算法Bayes:朴素贝叶斯公式decisiontree:决策
- 朴素贝叶斯模型
月岛雫-
机器学习python机器学习开发语言
高斯贝叶斯分类器高斯贝叶斯分类器的计算过程还是比较简单的,其关键的核心是假设数值型变量服从正态分布,如果实际数据近似服从正态分布,分类结果会更加准确。sklearn模块提供了实现该分类器的计算功能,它就是naive_bayes子模块中的GaussianNB类,由于该“类”仅包含一个参数,且参数的默认值是以各类别的频率作为先验概率,因此在调用GaussianNB类构造高斯贝叶斯分类器时,可以不传递任
- 朴素贝叶斯法_naive_Bayes
沉住气CD
机器学习常用算法机器学习算法人工智能数据挖掘
朴素贝叶斯法(naiveBayes)是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入输出的联合概率分布;然后基于此模型,对给定的输入xxx,利用贝叶斯定理求出后验概率最大的输出yyy。基本方法:设输入空间X⊆RnX\subseteqR^nX⊆Rn为nnn维向量的集合,输出空间为类标记集合Y={c1,c2,...,ck}Y=\{c_1,c_2,..
- python文本分类算法_基于Naive Bayes算法的文本分类
weixin_39832643
python文本分类算法
理论什么是朴素贝叶斯算法?朴素贝叶斯分类器是一种基于贝叶斯定理的弱分类器,所有朴素贝叶斯分类器都假定样本每个特征与其他特征都不相关。举个例子,如果一种水果其具有红,圆,直径大概3英寸等特征,该水果可以被判定为是苹果。尽管这些特征相互依赖或者有些特征由其他特征决定,然而朴素贝叶斯分类器认为这些属性在判定该水果是否为苹果的概率分布上独立的。朴素贝叶斯分类器很容易建立,特别适合用于大型数据集,众所周知,
- sk-learn实例-用朴素贝叶斯算法(Naive Bayes)对文本进行分类
张大千09
机器学习sklearn朴素贝叶斯机器学习
简介朴素贝叶斯(NaiveBayes)是一个非常简单,但是实用性很强的分类模型,与基于线性假设的模型(线性分类器和支持向量机分类器)不同,朴素贝叶斯分类器的构造基础是贝叶斯理论。抽象一些的说,朴素贝叶斯分类器会单独考量每一维度特征被分类的条件概率,进而综合这些概率并对其所在的特征向量做出分类预测。因此,这个模型的基本数学假设是:各个维度上的特征被分类的条件概率之间是相互独立的。对朴素贝叶斯算法更深
- [数据挖掘之scikit-learn] sklean.naive_bayes实例详解
努力的骆驼
Python数据分析Python机器学习naive_bayes伯努利多项式高斯
文章目录概述2.sklearn.naive_bayes2.1sklearn.naive_bayes.MultinomialNB2.1.1MultinomialNB示例2.2sklearn.naive_bayes.BernoulliNB2.2.1BernoulliNB示例2.3sklearn.naive_bayes.GaussianNB2.3.1GaussianNB示例概述朴素贝叶斯分类算法主要是基
- 【机器学习】朴素贝叶斯(Naive Bayes)
蓝色蛋黄包
机器学习
【机器学习】k近邻算法(KNN)【机器学习】决策树(DecisionTree)【机器学习】朴素贝叶斯(NaiveBayes)1.概述贝叶斯分类算法是统计学的一种概率分类方法,朴素贝叶斯分类(NaiveBayes)是贝叶斯分类中最简单的一种。分类原理:利用贝叶斯公式根据某特征的先验概率计算出其后验概率,然后选择具有最大后验概率的类作为该特征所属的类。之所以称之为”朴素”,是因为贝叶斯分类只做最原始、
- 机器学习4—分类算法之朴素贝叶斯 (Naive Bayes)
小白只对大佬的文章感兴趣
机器学习机器学习分类算法
朴素贝叶斯(NaiveBayes)前言一、贝叶斯定理1.1定理推导1.2贝叶斯定理例子二、朴素贝叶斯1.高斯朴素贝叶斯(GaussianNB)2.多项分布朴素贝叶斯(MultinomialNB)3.伯努利分布朴素贝叶斯(BernoulliNB)4.三种朴素贝叶斯的对比三、朴素贝叶斯算法实现总结前言提示:这里可以添加本文要记录的大概内容:例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很
- 【机器学习】朴素贝叶斯算法(Naive Bayes,NB)
小田学Python
贝叶斯分类算法是统计学的一种分类方法,它是一类利用概率统计知识进行分类的算法。在许多场合,朴素贝叶斯(NaïveBayes,NB)分类算法可以与决策树和神经网络分类算法相媲美,该算法能运用到大型数据库中,而且方法简单、分类准确率高、速度快。01贝叶斯贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。首
- 使用Naive Bayes进行文本分类
bitcarmanlee
textclassifierbayesnaive文本分类
1.NaiveBayes算法朴素贝叶斯是一个简单但是十分高效的算法,在处理不是特别复杂的文本分类问题时,准确率相当不错,而且速度很快。像经典的垃圾邮件判别就是朴素贝叶斯算法的一个成功案例。简单复习一下Bayes的原理:Bayes公式:P(AB)=P(A∣B)P(B)=P(B∣A)P(A)P(AB)=P(A|B)P(B)=P(B|A)P(A)P(AB)=P(A∣B)P(B)=P(B∣A)P(A)P(
- sklearn中Naive Bayes的原理及使用案例
python慕遥
机器学习与深度学习sklearn人工智能机器学习
大家好,今天本文将介绍sklearn中NaiveBayes的原理及使用案例。一、NaiveBayes的原理朴素贝叶斯(NaiveBayes)是一种基于贝叶斯定理的分类算法,它假设所有特征之间相互独立,即给定类别的情况下,特征之间是条件独立的。朴素贝叶斯的基本思想是通过计算后验概率来进行分类,即给定样本的特征,计算出样本属于每个类别的概率,然后选择概率最大的类别作为分类结果。朴素贝叶斯的计算过程如下
- Copula-Variational-Bayes 元高斯分析法的 MATLAB 仿真
CodeRoarX
matlab算法开发语言Matlab
Copula-Variational-Bayes元高斯分析法的MATLAB仿真介绍在本篇文章中,我们将介绍Copula-Variational-Bayes元高斯分析法的MATLAB仿真。Copula-Variational-Bayes元高斯分析法是一种用于概率建模和推断的方法,特别适用于处理具有复杂依赖结构的数据集。在本文中,我们将讨论该方法的原理,并提供相应的MATLAB代码进行仿真实现。Cop
- Task02-朴素贝叶斯(Naive Bayes)-算法实践(天池机器学习训练营D6)
北欧森林
本笔记为参加阿里云“天池龙珠计划机器学习训练营”所做的学习记录,代码及知识内容均来源于训练营,本人稍作扩充。具体活动内容请移步阿里云天池龙珠计划;同时感谢公众号“机器学习炼丹术”的介绍、推广和组织。模拟离散数据集--贝叶斯分类Step1:库函数导入+Step2:数据导入&分析+Step3:模型训练&可视化+Step4:原理简析importrandomimportnumpyasnp#使用基于类目特征
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的