快速莫比乌斯变换(FMT)

快速莫比乌斯变换(FMT)

原文出处:虞大的博客。此仅作蒟蒻本人复习用~

给定两个长度为n的序列 \(a_0, a_1, \cdots, a_{n-1}\)\(b_0, b_1, \cdots, b_{n-1}\),你需要求出一个序列\(c_0, c_1, \cdots, c_{n-1}\),其中\(c_k\)满足:\(c_k = \sum\limits_{i \mid j = k} a_i b_j\)。其中|表示按位或。\(n \leq 10^6\)表示序列长度。

显然发现\(i∣j=k\)这个条件不怎么好处理,如果我们作一个集合的 "前缀和" ,即令\(P_i = \sum\limits_{j \subseteq i} p_j\)\(i\&j=j\)),那么有:\(C_k = \sum_{k_0 \subseteq k} c_i = \sum_{k_0 \subseteq k} \sum_{i \cup j = k_0} a_i b_j = \sum_{i \cup j \subseteq k} a_i b_j = \left( \sum_{i \subseteq k} a_i \right) \left( \sum_{j \subseteq k} b_j \right) = A_k \cdot B_k\)

所以说我们就把集合并卷积转化成了两个“前缀和”集合的\(O(n)\)运算,和FFT差不多。现在的问题就是怎么快速算出这些“前缀和”集合。

我们可以画一张图,图中每一行代表一个\(P_i\)。这一行有哪些格子涂蓝,就代表它是哪些\(p_i\)的和:

快速莫比乌斯变换(FMT)_第1张图片

如果用动态规划来理解的话,令\(f[i][j]\)表示j的开头\(2^i\)个数中为权值为1的数的和, 那么转移显然就是\(f[i+1][j+2^i]+=f[i][j]\)(j的\(2^i\)位是0)。其中j这一维是可以压掉的。

如果改变一下你脑海中的求和顺序,那么循环内的一次加法,就相当于一个集合的前面2^i个元素的值被加上了。

快速莫比乌斯变换(FMT)_第2张图片

如果要把\(f\)还原该怎么办呢?只要把+=改成-=就行了~(不会证,但是真的很好记)

#include 
#include 
using namespace std;

typedef long long LL;
const LL maxn=2e6+5;
LL n, l, bits, a[maxn], b[maxn], c[maxn];

void FMT(LL *f, LL flag){
    for (LL i=0; i>i&1)==0) f[j|1<

转载于:https://www.cnblogs.com/MyNameIsPc/p/9285920.html

你可能感兴趣的:(数据结构与算法)