机器学习笔记之基本框架:

机器学习学习思路导图

机器学习笔记之基本框架:_第1张图片

名词的解释:

回归:

线性回归(polinomial regression多项式回归): https://segmentfault.com/a/1190000007639352

机器学习入门:线性回归及梯度下降: http://blog.csdn.net/xiazdong/article/details/7950084

http://www.cnblogs.com/charlotte77/p/5488488.html

逻辑回归,线性回归?

 https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/1-1-A-ANN-and-NN/

神经网络

神经元:    M-P模型的来源 :http://blog.csdn.net/u013007900/article/details/50066315

激活函数:?

感知器:单层感知器?

神经网络浅讲:从神经元到深度学习:http://www.cnblogs.com/subconscious/p/5058741.html

 

python--> anaconda3

python-->

 

 

 

 https://github.com/nlintz/TensorFlow-Tutorials

 梯度消失?

CNN:卷积神经网络

RNN:循环神经网络

DNN:深度神经网络

Keras. Anaconda,ONNX,Jupyter Notebook.

BP反向传播梯度??

Microsoft Azure Notebooks

https://notebooks.azure.com/Microsoft/libraries/samples/html/Azure%20Notebooks%20-%20Welcome.ipynb

 

 

Reference Page:

Introduction to Computer Science:  http://www.cs.rpi.edu/~sibel/csci1100/fall2014/index.html

jupyter: http://jupyter.org/

TensorFlow-Tutorials: https://github.com/thrillerist/TensorFlow-Tutorials

http://cs231n.stanford.edu/

转载于:https://www.cnblogs.com/chp008/p/7920871.html

你可能感兴趣的:(人工智能,数据结构与算法,开发工具)