1,
基本Kmeans算法的步骤:
选择K个点作为初始质心,然后循环{将每个点指派到最近的质心形成K个簇,重新计算每个簇的质心}直到簇不发生变化或达到最大迭代次数
时间复杂度:O(tKmn),其中,t为迭代次数,K为簇的数目,m为记录数,n为维数
空间复杂度:O((m+K)n),其中,K为簇的数目,m为记录数,n为维数
2,
K如何确定:
kmeans 首先选择K个初始质心,其中K是用户指定的参数,即所期望的簇的个数。这样做的前提是我们已经知道数据集中包含多少个簇,但很多情况下,我们并不知道数据 的分布情况,实际上聚类就是我们发现数据分布的一种手段,这就陷入了鸡和蛋的矛盾。如何有效的确定K值,这里大致提供几种方法:
====================
2_1.与层次聚类结合
经常会产生较好的聚类结果的一个有趣策略是,首先采用层次凝聚算法决定结果粗的数目,并找到一个初始聚类,然后用迭代重定位来改进该聚类。
2_2.稳定性方法
稳定性方法对一个数据集进行2次重采样产生2个数据子集,再用相同的聚类算法对2个数据子集进行聚类,产生2个具有k个聚类的聚类结果,计算2个聚类结果 的相似度的分布情况。2个聚类结果具有高的相似度说明k个聚类反映了稳定的聚类结构,其相似度可以用来估计聚类个数。采用次方法试探多个k,找到合适的k 值。
2_3.系统演化方法[3]
系统演化方法将一个数据集视为伪热力学系统,当数据集被划分为K个聚类时称系统处于状态K。系统由初始状态K=1出发,经过分裂过程和合并过程,系统将演 化到它的稳定平衡状态Ki,其所对应的聚类结构决定了最优类数Ki。系统演化方法能提供关于所有聚类之间的相对边界距离或可分程度,它适用于明显分离的聚 类结构和轻微重叠的聚类结构。
2_4.使用canopy算法进行初始划分[4]
基于Canopy Method的聚类算法将聚类过程分为两个阶段
Stage1、聚类最耗费计算的地方是计算对象相似性的时候,Canopy Method在第一阶段选择简单、计算代价较低的方法计算对象相似性,将相似的对象放在一个子集中,这个子集被叫做Canopy ,通过一系列计算得到若干Canopy,Canopy之间可以是重叠的,但不会存在某个对象不属于任何Canopy的情况,可以把这一阶段看做数据预处 理;
Stage2、在各个Canopy 内使用传统的聚类方法(如K-means),不属于同一Canopy 的对象之间不进行相似性计算。
从 这个方法起码可以看出两点好处:首先,Canopy 不要太大且Canopy 之间重叠的不要太多的话会大大减少后续需要计算相似性的对象的个数;其次,类似于K-means这样的聚类方法是需要人为指出K的值的,通过Stage1 得到的Canopy 个数完全可以作为这个K值,一定程度上减少了选择K的盲目性。
===================
3,
距离的度量
常 用的距离度量方法包括:欧几里得距离和余弦相似度。两者都是评定个体间差异的大小的。欧几里得距离度量会受指标不同单位刻度的影响,所以一般需要先进行标 准化,同时距离越大,个体间差异越大;空间向量余弦夹角的相似度度量不会受指标刻度的影响,余弦值落于区间[-1,1],值越大,差异越小。但是针对具体 应用,什么情况下使用欧氏距离,什么情况下使用余弦相似度?
从 几何意义上来说,n维向量空间的一条线段作为底边和原点组成的三角形,其顶角大小是不确定的。也就是说对于两条空间向量,即使两点距离一定,他们的夹角余 弦值也可以随意变化。感性的认识,当两用户评分趋势一致时,但是评分值差距很大,余弦相似度倾向给出更优解。举个极端的例子,两用户只对两件商品评分,向 量分别为(3,3)和(5,5),这两位用户的认知其实是一样的,但是欧式距离给出的解显然没有余弦值合理。
4,
质心的计算
对于距离度量不管是采用欧式距离还是采用余弦相似度,簇的质心都是其均值,即向量各维取平均即可。
5,
算法停止条件
一般是目标函数达到最优或者达到最大的迭代次数即可终止。对于不同的距离度量,目标函数往往不同。当采用欧式距离时,目标函数一般为最小化对象到其簇质心的距离的平方和,如下:
当采用余弦相似度时,目标函数一般为最大化对象到其簇质心的余弦相似度和,如下:
6,
空聚类处理
如 果所有的点在指派步骤都未分配到某个簇,就会得到空簇。如果这种情况发生,则需要某种策略来选择一个替补质心,否则的话,平方误差将会偏大。一种方法是选 择一个距离当前任何质心最远的点。这将消除当前对总平方误差影响最大的点。另一种方法是从具有最大SSE的簇中选择一个替补的质心。这将分裂簇并降低聚类 的总SSE。如果有多个空簇,则该过程重复多次。另外,编程实现时,要注意空簇可能导致的程序bug。
Madlib上Kmeans的实现
准备数据:
postgres=# CREATE TABLE public.km_sample(pid int, points double precision[]);
NOTICE: Table doesn't have 'DISTRIBUTED BY' clause -- Using column named 'pid' as the Greenplum Database data distribution key for this table.
HINT: The 'DISTRIBUTED BY' clause determines the distribution of data. Make sure column(s) chosen are the optimal data distribution key to minimize skew.
ERROR: relation "km_sample" already exists
postgres=# COPY km_sample (pid, points) FROM stdin DELIMITER '|';
Enter data to be copied followed by a newline.
End with a backslash and a period on a line by itself.
>> 1 | {14.23, 1.71, 2.43, 15.6, 127, 2.8, 3.0600, 0.2800, 2.29, 5.64, 1.04, 3.92, 1065}
2 | {13.2, 1.78, 2.14, 11.2, 1, 2.65, 2.76, 0.26, 1.28, 4.38, 1.05, 3.49, 1050}
3 | {13.16, 2.36, 2.67, 18.6, 101, 2.8, 3.24, 0.3, 2.81, 5.6799, 1.03, 3.17, 1185}
4 | {14.37, 1.95, 2.5, 16.8, 113, 3.85, 3.49, 0.24, 2.18, 7.8, 0.86, 3.45, 1480}
5 | {13.24, 2.59, 2.87, 21, 118, 2.8, 2.69, 0.39, 1.82, 4.32, 1.04, 2.93, 735}
6 | {14.2, 1.76, 2.45, 15.2, 112, 3.27, 3.39, 0.34, 1.97, 6.75, 1.05, 2.85, 1450}
7 | {14.39, 1.87, 2.45, 14.6, 96, 2.5, 2.52, 0.3, 1.98, 5.25, 1.02, 3.58, 1290}
8 | {14.06, 2.15, 2.61, 17.6, 121, 2.6, 2.51, 0.31, 1.25, 5.05, 1.06, 3.58, 1295}
9 | {14.83, 1.64, 2.17, 14, 97, 2.8, 2.98, 0.29, 1.98, 5.2, 1.08, 2.85, 1045}
10 | {13.86, 1.35, 2.27, 16, 98, 2.98, 3.15, 0.22, 1.8500, 7.2199, 1.01, 3.55, 1045}
\.>> >> >> >> >>
//在中心生成的时候用Kmeans++方法去跑Kmeans聚类
postgres=# \x on;
Expanded display is on.
postgres=# SELECT * FROM madlib.kmeanspp( 'km_sample',
postgres(# 'points',
postgres(# 2,
postgres(# 'madlib.squared_dist_norm2',
postgres(# 'madlib.avg',
postgres(# 20,
postgres(# 0.001
postgres(# );
-[ RECORD 1 ]---+-------------------------------------------------------------------------------------------------------------------------------------------------------------------
centroids | {{13.872,1.814,2.376,15.56,88.2,2.806,2.928,0.288,1.844,5.35198,1.044,3.348,988},{14.036,2.018,2.536,16.56,108.6,3.004,3.03,0.298,2.038,6.10598,1.004,3.326,1340}}
objective_fn | 151184.962671616
frac_reassigned | 0
num_iterations | 2
计算简化轮廓系数:
postgres=# SELECT * FROM madlib.simple_silhouette( 'km_sample',
postgres(# 'points',
postgres(# (SELECT centroids FROM
postgres(# madlib.kmeanspp('km_sample',
postgres(# 'points',
postgres(# 2,
postgres(# 'madlib.squared_dist_norm2',
postgres(# 'madlib.avg',
postgres(# 20,
postgres(# 0.001)),
postgres(# 'madlib.dist_norm2'
postgres(# );
-[ RECORD 1 ]-----+------------------
simple_silhouette | 0.686314347664694
postgres=# \x off;
最后要遍历每个点属于哪个cluster,执行:
得出:
pid | points | cluster_id
-----+--------------------------------------------------------------------+------------
1 | {14.23,1.71,2.43,15.6,127,2.8,3.06,0.28,2.29,5.64,1.04,3.92,1065} | 0
1 | {14.23,1.71,2.43,15.6,127,2.8,3.06,0.28,2.29,5.64,1.04,3.92,1065} | 0
1 | {14.23,1.71,2.43,15.6,127,2.8,3.06,0.28,2.29,5.64,1.04,3.92,1065} | 0
2 | {13.2,1.78,2.14,11.2,1,2.65,2.76,0.26,1.28,4.38,1.05,3.49,1050} | 0
2 | {13.2,1.78,2.14,11.2,1,2.65,2.76,0.26,1.28,4.38,1.05,3.49,1050} | 0
2 | {13.2,1.78,2.14,11.2,1,2.65,2.76,0.26,1.28,4.38,1.05,3.49,1050} | 0
3 | {13.16,2.36,2.67,18.6,101,2.8,3.24,0.3,2.81,5.6799,1.03,3.17,1185} | 0
3 | {13.16,2.36,2.67,18.6,101,2.8,3.24,0.3,2.81,5.6799,1.03,3.17,1185} | 0
3 | {13.16,2.36,2.67,18.6,101,2.8,3.24,0.3,2.81,5.6799,1.03,3.17,1185} | 0
4 | {14.37,1.95,2.5,16.8,113,3.85,3.49,0.24,2.18,7.8,0.86,3.45,1480} | 1
4 | {14.37,1.95,2.5,16.8,113,3.85,3.49,0.24,2.18,7.8,0.86,3.45,1480} | 1
4 | {14.37,1.95,2.5,16.8,113,3.85,3.49,0.24,2.18,7.8,0.86,3.45,1480} | 1
5 | {13.24,2.59,2.87,21,118,2.8,2.69,0.39,1.82,4.32,1.04,2.93,735} | 0
5 | {13.24,2.59,2.87,21,118,2.8,2.69,0.39,1.82,4.32,1.04,2.93,735} | 0
5 | {13.24,2.59,2.87,21,118,2.8,2.69,0.39,1.82,4.32,1.04,2.93,735} | 0
6 | {14.2,1.76,2.45,15.2,112,3.27,3.39,0.34,1.97,6.75,1.05,2.85,1450} | 1
6 | {14.2,1.76,2.45,15.2,112,3.27,3.39,0.34,1.97,6.75,1.05,2.85,1450} | 1
6 | {14.2,1.76,2.45,15.2,112,3.27,3.39,0.34,1.97,6.75,1.05,2.85,1450} | 1
7 | {14.39,1.87,2.45,14.6,96,2.5,2.52,0.3,1.98,5.25,1.02,3.58,1290} | 1
7 | {14.39,1.87,2.45,14.6,96,2.5,2.52,0.3,1.98,5.25,1.02,3.58,1290} | 1
7 | {14.39,1.87,2.45,14.6,96,2.5,2.52,0.3,1.98,5.25,1.02,3.58,1290} | 1
8 | {14.06,2.15,2.61,17.6,121,2.6,2.51,0.31,1.25,5.05,1.06,3.58,1295} | 1
8 | {14.06,2.15,2.61,17.6,121,2.6,2.51,0.31,1.25,5.05,1.06,3.58,1295} | 1
8 | {14.06,2.15,2.61,17.6,121,2.6,2.51,0.31,1.25,5.05,1.06,3.58,1295} | 1
9 | {14.83,1.64,2.17,14,97,2.8,2.98,0.29,1.98,5.2,1.08,2.85,1045} | 0
9 | {14.83,1.64,2.17,14,97,2.8,2.98,0.29,1.98,5.2,1.08,2.85,1045} | 0
9 | {14.83,1.64,2.17,14,97,2.8,2.98,0.29,1.98,5.2,1.08,2.85,1045} | 0
10 | {13.86,1.35,2.27,16,98,2.98,3.15,0.22,1.85,7.2199,1.01,3.55,1045} | 0
10 | {13.86,1.35,2.27,16,98,2.98,3.15,0.22,1.85,7.2199,1.01,3.55,1045} | 0
10 | {13.86,1.35,2.27,16,98,2.98,3.15,0.22,1.85,7.2199,1.01,3.55,1045} | 0
(30 rows)
其中:
rel_source是输入数据的表
expr_point是列名
k是k个中心
fn_dist是计算点到中心的距离
agg_centoid是决定中心的聚合方法
max_num_iterations是迭代次数
min_frac_reassigned是被分配给继续迭代的中心的部分
seeding_sample_ratio(optional)是使用seeding method的时候原始数据集中前一轮样本点比例
rel_initial_centroids是原始中心序列
expr_centroid是rel_initial_centroids中包含中心坐标的列的名字