设计模式之解释器模式(一)

定义

给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子。

有的朋友或许和我一样都是刚刚接触设计模式的菜鸟,可能在看到这个定义的时候仍然是一头雾水,不知道说的是什么。下面我用自己的话说一下自己的理解吧:

解释器模式就是描述怎样为简单的语言定义一个文法,又该怎样在该语言中表示一个句子,以及如何解释这个句子的标准模式。

 

背景

       众所周知,像C++、Java和C#等语言无法直接解释类似“1+ 2 + 3 – 4 + 1”这样的字符串(如果直接作为数值表达式时可以解释),我们必须自己定义一套文法规则来实现对这些语句的解释,即设计一个自定义语言。在实际开发中,这些简单的自定义语言可以基于现有的编程语言来设计,如果所基于的编程语言是面向对象语言,此时可以使用解释器模式来实现自定义语言。

      

结构

 设计模式之解释器模式(一)_第1张图片

·        终结符表达式:实现与文法中的元素相关联的解释操作,通常一个解释器模式中只有一个终结符表达式,但有多个实例,对应不同的终结符。终结符一半是文法中的运算单元,比如有一个简单的公式R=R1+R2,在里面R1和R2就是终结符,对应的解析R1和R2的解释器就是终结符表达式。                                

·        非终结符表达式:文法中的每条规则对应于一个非终结符表达式,非终结符表达式一般是文法中的运算符或者其他关键字,比如公式R=R1+R2中,+就是非终结符,解析+的解释器就是一个非终结符表达式。非终结符表达式根据逻辑的复杂程度而增加,原则上每个文法规则都对应一个非终结符表达式。

 

使用条件

1、  如果一种特定类型的问题发生的频率足够高,那么就可值得将该问题的各个实例表述为一个简单语言的句子,这样就可以构建一个解释器,该解释器通过解释这些句子来解决该问题。

2、  当有一个语言需要解释执行,并且你可将该语言中的句子表示为一个抽象语法树,可以使用解释器模式。而当存在以下情况时该模式效果最好 

a)        该文法的类层次结构变得庞大而无法管理。此时语法分析程序生成器这样的工

具是最好的选择。他们无需构建抽象语法树即可解释表达式,这样可以节省空间而且还可能节省时间。 

b)     效率不是一个关键问题,最高效的解释器通常不是通过直接解释语法分析树实现的,而是首先将他们装换成另一种形式,例如,正则表达式通常被装换成状态机,即使在这种情况下,转换器仍可用解释器模式实现,该模式仍是有用的。

 

 

解释器模式的优缺点

       解释器是一个简单的语法分析工具,它最显著的优点就是扩展性,修改语法规则只需要修改相应的非终结符就可以了,若扩展语法,只需要增加非终结符类就可以了。

       但是,解释器模式会引起类的膨胀,每个语法都需要产生一个非终结符表达式,语法规则比较复杂时,就可能产生大量的类文件,为维护带来非常多的麻烦。同时,由于采用递归调用方法,每个非终结符表达式只关心与自己相关的表达式,每个表达式需要知道最终的结果,必须通过递归方式,无论是面向对象的语言还是面向过程的语言,递归都是一个不推荐的方式。由于使用了大量的循环和递归,效率是一个不容忽视的问题。特别是用于解释一个解析复杂、冗长的语法时,效率是难以忍受的。

 

解释器模式的适用场景

       在以下情况下可以使用解释器模式:

  • 有一个简单的语法规则,比如一个sql语句,如果我们需要根据sql语句进行rm转换,就可以使用解释器模式来对语句进行解释。
  • 一些重复发生的问题,比如加减乘除四则运算,但是公式每次都不同,有时是a+b-c*d,有时是a*b+c-d,等等等等个,公式千变万化,但是都是由加减乘除四个非终结符来连接的,这时我们就可以使用解释器模式。

注意事项

       解释器模式真的是一个比较少用的模式,因为对它的维护实在是太麻烦了,想象一下,一坨一坨的非终结符解释器,假如不是事先对文法的规则了如指掌,或者是文法特别简单,则很难读懂它的逻辑。解释器模式在实际的系统开发中使用的很少,因为他会引起效率、性能以及维护等问题。

你可能感兴趣的:(设计模式)