Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 290991 Accepted Submission(s): 69018
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5
6 -1 5 4 -7
7
0 6 -1 1 -6 7 -5
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
Author
Ignatius.L
Recommend
We have carefully selected several similar problems for you: 1176 1087 1069 2084 1058
给定K个整数的序列{ N1,N2 ... NK },其任意连续子序列可表示为{ Ni,Ni+1 ...Nj },其中 1<= i <= j <= K。最大连续子序列是所有连续子序列中元素和最大的一个, 例如给定序列{ -2,11 ,-4 ,13 ,-5 ,-2 },其最大连续子序列为{ 11, -4 ,13 },最大和 为20。
#include
#include
using namespace std;
int a[100010];
struct node {
int sum, left, right;
};//存储结果
node recursionMax (int left, int right)
{
// 只有一个数
if (left == right) return {a[left], left, right};
int mid = (left + right) / 2;
node maxLeft = recursionMax (left, mid); // 左
node maxRight = recursionMax(mid + 1, right); // 右
int left_sum = -0x7fffffff, right_sum = -0x7fffffff, li = mid, ri = mid + 1;
int tmp = 0;
//求左区间的最大值
for (int i = mid; i >= left; i--)
{
tmp += a[i];
if (left_sum <= tmp) {
left_sum = tmp;
li = i;
}
}
tmp = 0;
//求右区间的最大值
for (int j = mid + 1; j <= right; j++)
{
tmp += a[j];
if (right_sum < tmp) {
right_sum = tmp;
ri = j;
}
}
node ret = maxLeft.sum >= maxRight.sum ? maxLeft : maxRight;
if (ret.sum > left_sum + right_sum) {
return ret;
} else if (ret.sum == left_sum + right_sum && ret.left < li) {
return ret;
} else {
return {left_sum + right_sum, li, ri};
}
}
int main ()
{
int n,T,Case=1;
cin>>T;
while (T--) {
cin >> n;
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
if(Case!=1) printf("\n");
node ret = recursionMax(0, n - 1);
printf("Case %d:\n%d %d %d\n",Case++, ret.sum, ret.left + 1, ret.right + 1);
}
return 0;
}
#include
#include
#include
#include
using namespace std;
const int maxn = 100010;
int a[maxn];
int main()
{
int n,T,Case=1;
cin>>T;
while(T--){
scanf("%d",&n);
for(int i = 0; i < n; i++)
scanf("%d", &a[i]);
if(Case!=1) printf("\n");
if(n == 1)
printf("%d\n",a[0]);
else {
int pos=0,begin=0,end=0;
int max_sum=a[0],sum=a[0];
for(int i=1;imax_sum){
//当前值比最大值大,则头尾都要改
max_sum=sum;
begin=pos;
end=i;
}
}
printf("Case %d:\n%d %d %d\n",Case++,max_sum,begin+1,end+1);
}
}
return 0;
}