深度优先用法之检测有无环

学习心得:课前没有好好预习,上课被老师问倒一片闷,o(︶︿︶)o,课后好好反思,以后要好好预习算法!!

 

首先是检测无向图里面是否有无环

(前提是无向环里没有自环边,平行边)

代码如下

//检测一个无向图是否有环

public class Cycle

{

    private boolean[] marked;

    private boolean hasCycle;

    

    public Cycle(Graph G)

    {

        marked = new boolean[G.V()];

        for(int s=0;s<G.V();s++)

            if(!marked[s])

                dfs(G,s,s);    //问题是这里为什么要两个顶点s,s了????

    }

    

    private void dfs(Graph G,int v,int u)

    {

        marked[v] = true;

        for(int w:G.adj(v))

            if(!marked[w])

                dfs(G,w,v);  //如果一个没有被标记,就对它进行dfs,并且记录它的父节点

            else if(w!=u)    //如果一个节点已经被访问标记了,而且还不等于它的父节点(上一个节点),那就是环了!!

                hasCycle = true;

    }

    public boolean hasCycle()

    {return hasCycle;}

}

 

/*具体解释:
要判断无向图是否存在一个环,则必须是要求是有3个或3个以上的点顶点是两两相连的,使用深度优先搜索,每条边都会被访问两次,这样两个顶点之间就有两边,
但这不能说是环!!所以在dfs中就加多了一个变量u,用来记录当前节点的上一个节点,即为该节点的父节点。
①对于两个节点的情况:

SW4R7ONI8H0O3KXF~QX7@CE


先进行dfs(1,1),标记1号节点,
然后再dfs(2,1) (此时v=2,u=1),递归标记2号节点,之后又从回去检测1号节点(此时w=1),就出现w==u的情况,表明不满足环的条件


对于三个节点的情况:

U(Q`)NTK@F[}W)CWQA6N%IG


假设先进行dfs(1,1),标记1号节点,
然后再dfs(2,1) ,递归标记2号节点,
标记好2号节点后,继续dfs(3,2),递归标记3号节点,
标记好3号节点后,最后又会回到标记1号节点,此时v=3,u=2,w=1,满足条件,成环!!!

以此类推,大于3个顶点的也成立。
这是一个很巧妙的设计,可以用其他的办法来规避这种两个顶点的情况,但毫无疑问,这个在dfs中加多一个变量的方法,真是太赞了!!
*/

你可能感兴趣的:(用法)