- 吴恩达深度学习笔记(30)-正则化的解释
极客Array
正则化(Regularization)深度学习可能存在过拟合问题——高方差,有两个解决方法,一个是正则化,另一个是准备更多的数据,这是非常可靠的方法,但你可能无法时时刻刻准备足够多的训练数据或者获取更多数据的成本很高,但正则化通常有助于避免过拟合或减少你的网络误差。如果你怀疑神经网络过度拟合了数据,即存在高方差问题,那么最先想到的方法可能是正则化,另一个解决高方差的方法就是准备更多数据,这也是非常
- 计算机视觉——第三章 图像拼接
JMU15980999055
python计算机视觉人工智能
计算机视觉——第三章图像拼接1.图像全景拼接的原理和过程的简要介绍1.1特征点提取和匹配1.2图像配准1.3图像拼接2.实现多图像拼接2.1图片集说明2.2实验代码2.3实验结果及其分析3.两张不同角度的图像拼接3.1图片集说明3.2实验代码3.3实验结果及其分析总结1.图像全景拼接的原理和过程的简要介绍在同一位置拍摄的两幅或者多幅图片是单应性相关的,我们经常使用该约束将很多图像缝补起来,拼成一个
- 吴恩达深度学习笔记(24)-为什么要使用深度神经网络?
极客Array
为什么使用深层表示?(Whydeeprepresentations?)我们都知道深度神经网络能解决好多问题,其实并不需要很大的神经网络,但是得有深度,得有比较多的隐藏层,这是为什么呢?我们一起来看几个例子来帮助理解,为什么深度神经网络会很好用。首先,深度网络在计算什么?如果你在建一个人脸识别或是人脸检测系统,深度神经网络所做的事就是,当你输入一张脸部的照片,然后你可以把深度神经网络的第一层,当成一
- 使用Tensorflow目标检测API训练自己的数据集
是我真的是我
使用官方1.x的目标检测API,安装过程见:https://www.jianshu.com/p/3257a32d4c5a一、制作数据集制作自己的数据集可以参考该方式:https://www.bilibili.com/video/BV1kV411k7D8即准备好图片集,然后利用LabelImg等公开标注软件进行标注并生成指定格式的标注文件。本文使用COCO数据集制作为tf_record格式数据集:C
- python实现长图拼接
剑舞飞花
pythonandroid数据库
#教程PS拼长图有点困难,也没找到简单好用的工具,python在图片处理方面十分成熟,可以实现简单拼接、多图排列拼接等,本文主要参考使用python将多张图片拼接成大图,今记录在此备份。importPIL.ImageasImageimportosIMAGES_PATH=r'C:\Users\Administrator\Desktop\image\\'#图片集地址IMAGES_FORMAT=['.p
- 吴恩达深度学习-L1 神经网络和深度学习总结
向来痴_
深度学习人工智能
作业地址:吴恩达《深度学习》作业线上版-知乎(zhihu.com)写的很好的笔记:吴恩达《深度学习》笔记汇总-知乎(zhihu.com)我的「吴恩达深度学习笔记」汇总帖(附18个代码实战项目)-知乎(zhihu.com)此处只记录需要注意的点,若想看原笔记请移步。1.1深度学习入门我们只需要管理神经网络的输入和输出,而不用指定中间的特征,也不用理解它们究竟有没有实际意义。1.2简单的神经网络——逻
- 前端视角看视频处理
最近在做某视频剪辑项目的后端开发,之前对于视频的处理一直是空白状态。项目中涉及到的很多概念,随着不断的接触,有了一个从模糊到清晰的认知。视频,英文:video,直译为视觉画面的频率,最原始的含义,应该是随着时间的流逝不停地播放画面,进而产生了一种视觉上连续的效果,彷佛重现了现实世界的场景。画面更新频率上图是一组小人跑步的图片集合(截取部分片段),组成的图片序列。当我们设置成连续自动播放后,就会形成
- 神经网络与深度学习 Neural Networks and Deep Learning 课程笔记 第一周
林间得鹿
吴恩达深度学习系列课程笔记深度学习神经网络笔记
神经网络与深度学习NeuralNetworksandDeepLearning课程笔记第一周文章目录神经网络与深度学习NeuralNetworksandDeepLearning课程笔记第一周深度学习简介什么是神经网络使用神经网络进行监督学习为什么神经网络会兴起本文是吴恩达深度学习系列课程的学习笔记。深度学习简介什么是神经网络深度学习一般是指训练神经网络。那么什么是神经网络?课程以房价预测的例子来说明
- android retrofit上传List集合数据
易寻资料
androidretrofit
由于接口需要,retrofit上传不能用POST,因为@FormUrlEncoded注解跟@Body不能共存,所以更改成了@QueryMap因为需要传参,所先将图片集合转成了Hashmap集合,再使用Gson将集合转成Json字符串,再转成RequestBody下面介绍一下retrofitpublicinterfaceApiService{@POST()@FormUrlEncodedObserva
- OpenCV简介、导入及图像处理基础方法讲解(图文解释 附源码)
showswoller
数据分析与可视化计算机视觉opencv图像处理计算机视觉人工智能python
需要源码和图片集请点赞关注收藏后评论区留言私信~~~一、OpenCV简介在计算机视觉项目的开发中,OpenCV作为较大众的开源库,拥有了丰富的常用图像处理函数库,采用C/C++语言编写,可以运行在Linux/Windows/Mac等操作系统上,能够快速的实现一些图像处理和识别的任务OpenCV还提供了Java、Python、cuda等的使用接口、机器学习的基础算法调用,从而使得图像处理和图像分析变
- 学习笔记1《吴恩达深度学习》Deep Learning
木懋懋
深度学习
P11.1.1欢迎Welcome深度学习改变了传统互联网业务,例如网络搜索和广告,但是深度学习同时也使得许多新产品和企业以很多方式帮助人们,从获得更好的健康关注,深度学习做得非常好的一个方面就是读取X光图像,到生活中的个性化教育,到精准化农业,甚至到驾驶汽车以及其他一些方面。如果你想要学习深度学习的这些工具,并应用它们来做这些令人窒息的操作,就学习这门课程。在接下来的十年中,我认为我们所有人都有机
- 吴恩达深度学习-学习笔记p1-p6
丢了橘子的夏天
深度学习学习笔记
哔哩哔哩网站视频-[双语字幕]吴恩达深度学习deeplearning.ai网站:up主:mHarvey,视频:[双语字幕]吴恩达深度学习deeplearning.ai一.p11.1欢迎二.p21.2什么是神经网络1.举例:根据面积预测房价假设有六个房子的房屋面积和价格,根据这个数据集,房屋面积预测房价的函数,这些是一个简单的神经网络神经元的功能就是输入面积完成线性运算,取不小于0的值,最后得到预测
- 吴恩达深度学习笔记(15)-浅层神经网络之神经网络概述
极客Array
神经网络概述(NeuralNetworkOverview)从今天开始你将学习如何实现一个神经网络。这里只是一个概述,详细的在后面会讲解,看不懂也没关系,先有个概念,就是前向计算然后后向计算,理解了这个就可以了,有一些公式和表达在后面会详细的讲解。在我们深入学习具体技术之前,我希望快速的带你预览一下后续几天你将会学到的东西。现在我们开始快速浏览一下如何实现神经网络。之前我们讨论了逻辑回归,我们了解了
- 【吴恩达深度学习】— 参数、超参数、正则化
Sunflow007
32.jpg1.参数VS超参数1.1什么是超参数(Hyperparameters)?比如算法中的learningrate(学习率)、iterations(梯度下降法循环的数量)、L(隐藏层数目)、(隐藏层单元数目)、choiceofactivationfunction(激活函数的选择)都需要你来设置,这些数字实际上控制了最后的参数W和b的值,所以它们被称作超参数。实际上深度学习有很多不同的超参数,
- 【机器视觉实验】机器视觉实验四——基于knn的场景图像检索、基于SVM的人脸图像识别
沐风—云端行者
深度学习实验支持向量机人工智能算法机器视觉计算机视觉机器学习图像识别
一、实验内容实验内容包含要进行什么实验,实验的目的是什么,实验用到的算法及其原理的简单介绍。(1)编程实现基于knn的场景图像检索a)至少实现三种特征组合进行检索;b)使用recall与precision分析不同特征组合对检索精度的影响。(2)实现基于SVM的人脸图像识别a)准备一张含有有自己照片的图片,并拍摄自己的人脸图片集;b)训练SVM人脸分类器c)实现基于滑动窗口的人脸检测算法;d)识别出
- 交并比(Intersection over union)
双木的木
吴恩达深度学习笔记深度学习知识点储备笔记算法机器学习python深度学习计算机视觉
来源:Coursera吴恩达深度学习课程如何判断目标检测算法运作良好呢?接下来,你将了解到并交比(intersectionoverunion)函数,可以用来评价目标检测算法。交并比(loU)函数做的是计算两个边界框交集和并集之比。两个边界框的并集是这个区域,就是属于包含两个边界框区域(绿色阴影表示区域),而交集就是这个比较小的区域(橙色阴影表示区域),那么交并比就是交集的大小,这个橙色阴影面积,然
- 文档 OCR 识别优化为异步思路逻辑
野生绿箭侠
ocrjava开发语言
文档OCR识别优化同步处理(原逻辑)当前系统识别文档为同步处理,已调整过python服务部分参数,但一份40M左右文档识别仍需要几十秒文档转为图片集合for循环中一直调用ocr识别异步处理nginx增加requestIdheader参数后端获取到requestId参数,保存threadLocal,键值数据为对应文档id,requestId需要在消息体中一直传递后端获取请求数据(生产者),将文档转为
- 吴恩达深度学习笔记(82)-深度卷积神经网络的发展史
极客Array
为什么要探索发展史(实例分析)?我们首先来看看一些卷积神经网络的实例分析,为什么要看这些实例分析呢?上周我们讲了基本构建,比如卷积层、池化层以及全连接层这些组件。事实上,过去几年计算机视觉研究中的大量研究都集中在如何把这些基本构件组合起来,形成有效的卷积神经网络。最直观的方式之一就是去看一些案例,就像很多人通过看别人的代码来学习编程一样,通过研究别人构建有效组件的案例是个不错的办法。实际上在计算机
- 我的2023年总结:旅行见天地,读书明事理,工作合行知
东木月
个人总结笔记经验分享程序人生风景生活
我的2023年总结呵,时间过得真快啊!有多快呢?像烟花,一瞬间。一瞬间就在一瞬间一场梦梦了一千年一转眼只是一转眼梦已醒却过了一千年这是写年总结以来的第四年,2023年往事回首三个字可概括:恍,荒,慌。文章目录我的2023年总结1、往年总结2、旅行如书2.1、云南过的异地年2.2、丽江泸沽湖、大理与香格里拉2.3、图片集2.4、其他篇章2.5、西北大环线3、工作如茶3.1、利其器3.2、最好的反脆弱
- 11种水果基于CNN训练python-pytorch环境
资深码里奥
深度学习pythoncnnpytorch人工智能神经网络
数据集介绍,下载本资源后,界面如下:有两个文件夹一个是存放数据集的文件。数据集介绍:含有11种水果,包含['樱桃','橘子','火龙果','牛油果','猕猴桃','芒果','苹果','草莓','菠萝','西瓜','香蕉'],总共有2700多张图片集。然后本地的train.txt和val.txt里面存放的是数据集的图片路径和对应的标签。行train.py文件就会将train.txt和val.txt里
- 吴恩达深度学习课程作业--C1W2
HELLOTREE1
1.3-Reshapingarraysv=v.reshape((v.shape[0]*v.shape[1],v.shape[2]))#v.shape[0]=a;v.shape[1]=b;v.shape[2]=c
- 旅かえる(旅行青蛙)收藏图片集合2018-06-07
开子的私家地
前言旅かえる这个过时的游戏我居然玩到了现在,手机本地只能存储10页图片,总计10*6=60张,完全不够用。所以我从手机把他们迁移过来了。的照片集合特殊照片image.pngimage.pngimage.png和image.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage.pngimage
- 如何使用Lychee结合内网穿透搭建私人图床网站并发布至公网远程访问
Aomnitrix
服务器运维网络信息可视化
文章目录1.前言2.Lychee网站搭建2.1.Lychee下载和安装2.2Lychee网页测试2.3cpolar的安装和注册3.本地网页发布3.1Cpolar云端设置3.2Cpolar本地设置4.公网访问测试5.结语1.前言图床作为图片集中存放的服务网站,可以看做是云存储的一部分,既可以作为我们存放照片的存储空间,也可以建立外链成为网站或者文章的图片来源。但随着大厂运营的云存储日薄西山,各个图床
- 开源图床Lychee本地如何部署并结合内网穿透工具实现远程访问
在肯德基吃麻辣烫
cpolar
文章目录1.前言2.Lychee网站搭建2.1.Lychee下载和安装2.2Lychee网页测试2.3cpolar的安装和注册3.本地网页发布3.1Cpolar云端设置3.2Cpolar本地设置4.公网访问测试5.结语1.前言图床作为图片集中存放的服务网站,可以看做是云存储的一部分,既可以作为我们存放照片的存储空间,也可以建立外链成为网站或者文章的图片来源。但随着大厂运营的云存储日薄西山,各个图床
- 吴恩达深度学习学习笔记-7建立神经网络
猪猪2000
吴恩达深度学习学习笔记神经网络深度学习人工智能机器学习
1.训练神经网络训练神经网络时,需要做许多决策。例如,有多少层网络每层含有多少个隐藏单元学习率各层采用哪些激活函数…这些决策无法一次决定好,通常在项目启动时,我们会先有一个初步想法,然后编码,并尝试运行这些代码,再根据结果完善自己的想法,改变策略。2.train/dev/testsets通常把数据分为训练集,验证集,测试集。我们用训练集数据训练模型,用验证集做holdoutcrossvalidat
- 【吴恩达深度学习】Keras tutorial - the Happy House
深海里的鱼(・ω<)★
人工智能机器学习深度学习keras深度学习tensorflow
Kerastutorial-theHappyHouseWelcometothefirstassignmentofweek2.Inthisassignment,youwill:LearntouseKeras,ahigh-levelneuralnetworksAPI(programmingframework),writteninPythonandcapableofrunningontopofsever
- 吴恩达深度学习第二课-第一周笔记及课后编程题
Giraffeee_
吴恩达深度学习深度学习人工智能机器学习
笔记训练_开发_测试集小数据时代训练集/测试集的分配比例大致遵循70%/30%或训练集/开发集(或crossvalidationset)/测试集的分配比例大致遵循60%/20%/20%大数据时代只要开发集能够确定哪一个算法/模型有更好的表现,测试集能够无偏评估模型的性能,就称赋予了开发集、测试集足够的数据量了;训练集将被赋予更大比重的数据量。如:训练集/开发集/测试集的比率为98%/2%/2%注:
- 吴恩达深度学习--神经网络的优化(1)
Kangrant
吴恩达深度学习
1.训练集,验证集,测试集选择最佳的Train/Dev/Testsets非常重要。除此之外,构建神经网络时,需要设置的参数很多:神经网络层数,神经元个数,学习率的大小。激活函数的选择等等。实际上很难第一次就确定好这些参数,大致过程是:先确定初始参数,构建神经网络模型,然后通过代码实现该模型,之后进行试验确定模型的性能。根据性能再不断调整参数,重复上述过程,直到让神经网络模型最优。由上述可知,深度学
- 计划1
JLcucumber
1.吴恩达DL2021(强推|双字)2021版吴恩达深度学习课程Deeplearning.ai_哔哩哔哩_bilibiliPart1神经网络与深度学习(6+19+12+8)共45Part2训练、开发、测试集(14+10+11)共35Part3机器学习策略(13+11)共24Part4计算机视觉(11+14+14+(5+6))共50Part5序列模型(12+10+15)共372.经典网络模型论文ht
- vue使用v-viewer插件做图片展示预览遇到弹框再次打开无法预览图片问题
法法-發發發
vue部署javascriptvue.js
使用element-ui框架;v-viewer图片预览插件;问题描述:列表中点击查看详情,e-dialog弹框查看详情;弹框中有多张图片;列表刷新后,首次点击查看详情时;点击图片预览放大正常;关闭弹框后再次打开查看详情;点击图片无反应;挠头一小时,头发掉一地!!!经过大量比对。最后发下其问题所在:(就是技术菜)下面是有问题的代码片段:上述代码中;接收图片集合字符串,处理成集合进行循环;首次弹框访问
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIlinuxPHPandroid
╔-----------------------------------╗┆
- zookeeper admin 笔记
braveCS
zookeeper
Required Software
1) JDK>=1.6
2)推荐使用ensemble的ZooKeeper(至少3台),并run on separate machines
3)在Yahoo!,zk配置在特定的RHEL boxes里,2个cpu,2G内存,80G硬盘
数据和日志目录
1)数据目录里的文件是zk节点的持久化备份,包括快照和事务日
- Spring配置多个连接池
easterfly
spring
项目中需要同时连接多个数据库的时候,如何才能在需要用到哪个数据库就连接哪个数据库呢?
Spring中有关于dataSource的配置:
<bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
&nb
- Mysql
171815164
mysql
例如,你想myuser使用mypassword从任何主机连接到mysql服务器的话。
GRANT ALL PRIVILEGES ON *.* TO 'myuser'@'%'IDENTIFIED BY 'mypassword' WI
TH GRANT OPTION;
如果你想允许用户myuser从ip为192.168.1.6的主机连接到mysql服务器,并使用mypassword作
- CommonDAO(公共/基础DAO)
g21121
DAO
好久没有更新博客了,最近一段时间工作比较忙,所以请见谅,无论你是爱看呢还是爱看呢还是爱看呢,总之或许对你有些帮助。
DAO(Data Access Object)是一个数据访问(顾名思义就是与数据库打交道)接口,DAO一般在业
- 直言有讳
永夜-极光
感悟随笔
1.转载地址:http://blog.csdn.net/jasonblog/article/details/10813313
精华:
“直言有讳”是阿里巴巴提倡的一种观念,而我在此之前并没有很深刻的认识。为什么呢?就好比是读书时候做阅读理解,我喜欢我自己的解读,并不喜欢老师给的意思。在这里也是。我自己坚持的原则是互相尊重,我觉得阿里巴巴很多价值观其实是基本的做人
- 安装CentOS 7 和Win 7后,Win7 引导丢失
随便小屋
centos
一般安装双系统的顺序是先装Win7,然后在安装CentOS,这样CentOS可以引导WIN 7启动。但安装CentOS7后,却找不到Win7 的引导,稍微修改一点东西即可。
一、首先具有root 的权限。
即进入Terminal后输入命令su,然后输入密码即可
二、利用vim编辑器打开/boot/grub2/grub.cfg文件进行修改
v
- Oracle备份与恢复案例
aijuans
oracle
Oracle备份与恢复案例
一. 理解什么是数据库恢复当我们使用一个数据库时,总希望数据库的内容是可靠的、正确的,但由于计算机系统的故障(硬件故障、软件故障、网络故障、进程故障和系统故障)影响数据库系统的操作,影响数据库中数据的正确性,甚至破坏数据库,使数据库中全部或部分数据丢失。因此当发生上述故障后,希望能重构这个完整的数据库,该处理称为数据库恢复。恢复过程大致可以分为复原(Restore)与
- JavaEE开源快速开发平台G4Studio v5.0发布
無為子
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V5.0版本已经正式发布。
访问G4Studio网站
http://www.g4it.org
2013-04-06 发布G4Studio_V5.0版本
功能新增
(1). 新增了调用Oracle存储过程返回游标,并将游标映射为Java List集合对象的标
- Oracle显示根据高考分数模拟录取
百合不是茶
PL/SQL编程oracle例子模拟高考录取学习交流
题目要求:
1,创建student表和result表
2,pl/sql对学生的成绩数据进行处理
3,处理的逻辑是根据每门专业课的最低分线和总分的最低分数线自动的将录取和落选
1,创建student表,和result表
学生信息表;
create table student(
student_id number primary key,--学生id
- 优秀的领导与差劲的领导
bijian1013
领导管理团队
责任
优秀的领导:优秀的领导总是对他所负责的项目担负起责任。如果项目不幸失败了,那么他知道该受责备的人是他自己,并且敢于承认错误。
差劲的领导:差劲的领导觉得这不是他的问题,因此他会想方设法证明是他的团队不行,或是将责任归咎于团队中他不喜欢的那几个成员身上。
努力工作
优秀的领导:团队领导应该是团队成员的榜样。至少,他应该与团队中的其他成员一样努力工作。这仅仅因为他
- js函数在浏览器下的兼容
Bill_chen
jquery浏览器IEDWRext
做前端开发的工程师,少不了要用FF进行测试,纯js函数在不同浏览器下,名称也可能不同。对于IE6和FF,取得下一结点的函数就不尽相同:
IE6:node.nextSibling,对于FF是不能识别的;
FF:node.nextElementSibling,对于IE是不能识别的;
兼容解决方式:var Div = node.nextSibl
- 【JVM四】老年代垃圾回收:吞吐量垃圾收集器(Throughput GC)
bit1129
垃圾回收
吞吐量与用户线程暂停时间
衡量垃圾回收算法优劣的指标有两个:
吞吐量越高,则算法越好
暂停时间越短,则算法越好
首先说明吞吐量和暂停时间的含义。
垃圾回收时,JVM会启动几个特定的GC线程来完成垃圾回收的任务,这些GC线程与应用的用户线程产生竞争关系,共同竞争处理器资源以及CPU的执行时间。GC线程不会对用户带来的任何价值,因此,好的GC应该占
- J2EE监听器和过滤器基础
白糖_
J2EE
Servlet程序由Servlet,Filter和Listener组成,其中监听器用来监听Servlet容器上下文。
监听器通常分三类:基于Servlet上下文的ServletContex监听,基于会话的HttpSession监听和基于请求的ServletRequest监听。
ServletContex监听器
ServletContex又叫application
- 博弈AngularJS讲义(16) - 提供者
boyitech
jsAngularJSapiAngularProvider
Angular框架提供了强大的依赖注入机制,这一切都是有注入器(injector)完成. 注入器会自动实例化服务组件和符合Angular API规则的特殊对象,例如控制器,指令,过滤器动画等。
那注入器怎么知道如何去创建这些特殊的对象呢? Angular提供了5种方式让注入器创建对象,其中最基础的方式就是提供者(provider), 其余四种方式(Value, Fac
- java-写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
bylijinnan
java
public class CommonSubSequence {
/**
* 题目:写一函数f(a,b),它带有两个字符串参数并返回一串字符,该字符串只包含在两个串中都有的并按照在a中的顺序。
* 写一个版本算法复杂度O(N^2)和一个O(N) 。
*
* O(N^2):对于a中的每个字符,遍历b中的每个字符,如果相同,则拷贝到新字符串中。
* O(
- sqlserver 2000 无法验证产品密钥
Chen.H
sqlwindowsSQL ServerMicrosoft
在 Service Pack 4 (SP 4), 是运行 Microsoft Windows Server 2003、 Microsoft Windows Storage Server 2003 或 Microsoft Windows 2000 服务器上您尝试安装 Microsoft SQL Server 2000 通过卷许可协议 (VLA) 媒体。 这样做, 收到以下错误信息CD KEY的 SQ
- [新概念武器]气象战争
comsci
气象战争的发动者必须是拥有发射深空航天器能力的国家或者组织....
原因如下:
地球上的气候变化和大气层中的云层涡旋场有密切的关系,而维持一个在大气层某个层次
- oracle 中 rollup、cube、grouping 使用详解
daizj
oraclegroupingrollupcube
oracle 中 rollup、cube、grouping 使用详解 -- 使用oracle 样例表演示 转自namesliu
-- 使用oracle 的样列库,演示 rollup, cube, grouping 的用法与使用场景
--- ROLLUP , 为了理解分组的成员数量,我增加了 分组的计数 COUNT(SAL)
- 技术资料汇总分享
Dead_knight
技术资料汇总 分享
本人汇总的技术资料,分享出来,希望对大家有用。
http://pan.baidu.com/s/1jGr56uE
资料主要包含:
Workflow->工作流相关理论、框架(OSWorkflow、JBPM、Activiti、fireflow...)
Security->java安全相关资料(SSL、SSO、SpringSecurity、Shiro、JAAS...)
Ser
- 初一下学期难记忆单词背诵第一课
dcj3sjt126com
englishword
could 能够
minute 分钟
Tuesday 星期二
February 二月
eighteenth 第十八
listen 听
careful 小心的,仔细的
short 短的
heavy 重的
empty 空的
certainly 当然
carry 携带;搬运
tape 磁带
basket 蓝子
bottle 瓶
juice 汁,果汁
head 头;头部
- 截取视图的图片, 然后分享出去
dcj3sjt126com
OSObjective-C
OS 7 has a new method that allows you to draw a view hierarchy into the current graphics context. This can be used to get an UIImage very fast.
I implemented a category method on UIView to get the vi
- MySql重置密码
fanxiaolong
MySql重置密码
方法一:
在my.ini的[mysqld]字段加入:
skip-grant-tables
重启mysql服务,这时的mysql不需要密码即可登录数据库
然后进入mysql
mysql>use mysql;
mysql>更新 user set password=password('新密码') WHERE User='root';
mysq
- Ehcache(03)——Ehcache中储存缓存的方式
234390216
ehcacheMemoryStoreDiskStore存储驱除策略
Ehcache中储存缓存的方式
目录
1 堆内存(MemoryStore)
1.1 指定可用内存
1.2 驱除策略
1.3 元素过期
2 &nbs
- spring mvc中的@propertysource
jackyrong
spring mvc
在spring mvc中,在配置文件中的东西,可以在java代码中通过注解进行读取了:
@PropertySource 在spring 3.1中开始引入
比如有配置文件
config.properties
mongodb.url=1.2.3.4
mongodb.db=hello
则代码中
@PropertySource(&
- 重学单例模式
lanqiu17
单例Singleton模式
最近在重新学习设计模式,感觉对模式理解更加深刻。觉得有必要记下来。
第一个学的就是单例模式,单例模式估计是最好理解的模式了。它的作用就是防止外部创建实例,保证只有一个实例。
单例模式的常用实现方式有两种,就人们熟知的饱汉式与饥汉式,具体就不多说了。这里说下其他的实现方式
静态内部类方式:
package test.pattern.singleton.statics;
publ
- .NET开源核心运行时,且行且珍惜
netcome
java.net开源
背景
2014年11月12日,ASP.NET之父、微软云计算与企业级产品工程部执行副总裁Scott Guthrie,在Connect全球开发者在线会议上宣布,微软将开源全部.NET核心运行时,并将.NET 扩展为可在 Linux 和 Mac OS 平台上运行。.NET核心运行时将基于MIT开源许可协议发布,其中将包括执行.NET代码所需的一切项目——CLR、JIT编译器、垃圾收集器(GC)和核心
- 使用oscahe缓存技术减少与数据库的频繁交互
Everyday都不同
Web高并发oscahe缓存
此前一直不知道缓存的具体实现,只知道是把数据存储在内存中,以便下次直接从内存中读取。对于缓存的使用也没有概念,觉得缓存技术是一个比较”神秘陌生“的领域。但最近要用到缓存技术,发现还是很有必要一探究竟的。
缓存技术使用背景:一般来说,对于web项目,如果我们要什么数据直接jdbc查库好了,但是在遇到高并发的情形下,不可能每一次都是去查数据库,因为这样在高并发的情形下显得不太合理——
- Spring+Mybatis 手动控制事务
toknowme
mybatis
@Override
public boolean testDelete(String jobCode) throws Exception {
boolean flag = false;
&nbs
- 菜鸟级的android程序员面试时候需要掌握的知识点
xp9802
android
熟悉Android开发架构和API调用
掌握APP适应不同型号手机屏幕开发技巧
熟悉Android下的数据存储
熟练Android Debug Bridge Tool
熟练Eclipse/ADT及相关工具
熟悉Android框架原理及Activity生命周期
熟练进行Android UI布局
熟练使用SQLite数据库;
熟悉Android下网络通信机制,S