介绍
Anaconda是开源的Python包管理器。既是Python各种库的大礼包集合,特别是数据分析和科学计算方面的库都预装了,也是一个能创建虚拟机环境的工具。
我为什么安装
我安装它的原因不是科学计算,是因为我要用AkShare库获取数据,要求Python 3.6 及以上版本。我电脑Python 2.7.15,又不想升级,所以安装anaconda,用anaconda创建虚拟机环境,在虚拟机环境使用Python3.7,本地电脑保持原版本不变。
安装过程
下载地址www.anaconda.com选择download,
怎么用
打开
安装完成,在开始搜索ana会出现Anaconda prompt,我是以管理员身份运行的,不用管理员权限应该也没问题。
修改channels
建立环境的时候要下载很多包,如果下载速度慢会导致下载timeout而终止,会报错,
解决办法是把channels设置为清华大学的镜像地址,在命令行依次执行下面命令。建议先设置下面的channels,然后创建你的第一个环境。
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro/
新建环境
建立自己环境的命令conda create -n ak_test python=3.7.6, ak_test是新建环境的名称,叫什么随意,3.7.6是我指定的版本,需要哪个版本就写哪个。
到这里说明创建ak_test环境完成,同时提示进入环境和离开环境的命令。
执行conda activate ak_test,看到(base)变成了(ak_test),说明已经进入了ak_test环境。
安装akshare
这步每个人都不一样,按需要安装自己要的库。科学计算类的库Anaconda是预装的,安装更简单。
我建立这个环境是要使用akshare,安装,报错time out
是国内网络问题,使用阿里云镜像进行安装,命令如下
pip install akshare -i http://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com --upgrade
使用akshare
下面两个小例子展示akshare库的功能。
股票策略指数曲线
aksharetest.py
import akshare as ak
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.rcParams['axes.unicode_minus'] = False
stock_df = ak.zdzk_fund_index(30, plot=False)
futures_df = ak.zdzk_fund_index(32, plot=False)
fig = plt.figure(111, figsize=(20, 10), dpi=300)
adjust_stock_df = stock_df["20150102":] / stock_df["20150102"] * 1000
adjust_stock_df.plot(linewidth=4)
adjust_futures_df = futures_df["20150102":] / futures_df["20150102"] * 1000
adjust_futures_df.plot(linewidth=4)
plt.title("index example")
plt.legend()
plt.show()
股票指数查询
aksharetest02.py
import akshare as ak
stock_df = ak.stock_zh_index_spot()
print(stock_df)
ak_test环境和base是隔离的
如果执行conda deactivate离开这个环境切换到(base)环境,可以看到找不到akshare模块,说明base和ak_test环境是隔离的。
自建环境像是新建了个虚拟机
下面是vmware的虚拟机文件目录和Anaconda的自建环境文件目录,是不是有点像
总结
Anaconda可以迅速建立一套Python的开发运行环境,环境和宿主机互不影响,所建不同环境之间也互不影响,少了很多Python和库版本上的牵绊。
它在包管理上的使用,本文没有涉及。如果需要的库是anaconda里面预装的库和包,过程比本文要简单,堪称一键装机。