将数据集划分为 9 : 1 的训练集(train)和验证集(val)。
import os
from shutil import copy
import random
def mkfile(file):
if not os.path.exists(file):
os.makedirs(file)
# 当前文件所在文件夹下'flower_data/flower_photos'
# ————split_data.py
# ————flower_data
# —————————flower_photos
file = 'flower_data/flower_photos'
flower_class = [cla for cla in os.listdir(file) if ".txt" not in cla]
mkfile('flower_data/train')
for cla in flower_class:
mkfile('flower_data/train/' + cla)
mkfile('flower_data/val')
for cla in flower_class:
mkfile('flower_data/val/' + cla)
split_rate = 0.1
for cla in flower_class:
cla_path = file + '/' + cla + '/'
images = os.listdir(cla_path)
num = len(images)
eval_index = random.sample(images, k=int(num * split_rate))
for index, image in enumerate(images):
if image in eval_index:
image_path = cla_path + image
new_path = 'flower_data/val/' + cla
copy(image_path, new_path)
else:
image_path = cla_path + image
new_path = 'flower_data/train/' + cla
copy(image_path, new_path)
print("\r[{}] processing [{}/{}]".format(cla, index + 1, num),
end="") # processing bar
print()
print("processing done!")
import torch
import torch.nn as nn
class AlexNet(nn.Module):
def __init__(self, num_classes):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 48, kernel_size=11, stride=4, padding=2), # input(3, 224, 224) output(48, 55, 55)
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2), # (48, 27, 27)
nn.Conv2d(48, 128, kernel_size=5, padding=2), # (128, 27, 27)
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2), # (128, 13, 13)
nn.Conv2d(128, 192, kernel_size=3, padding=1), # (192, 13, 13)
nn.ReLU(inplace=True),
nn.Conv2d(192, 192, kernel_size=3, padding=1), # (192, 13, 13)
nn.ReLU(inplace=True),
nn.Conv2d(192, 128, kernel_size=3, padding=1), # (128, 13, 13)
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2), # (128, 6, 6)
)
self.classifier = nn.Sequential(
nn.Dropout(p=0.5),
nn.Linear(128 * 6 * 6, 2048),
nn.ReLU(inplace=True),
nn.Dropout(p=0.5),
nn.Linear(2048, 2048),
nn.ReLU(inplace=True),
nn.Linear(2048, num_classes),
)
def forward(self, x):
x = self.features(x)
x = torch.flatten(x, start_dim=1)
x = self.classifier(x)
return x
from model import AlexNet
import torch
import torchvision as tv
import json
import torchvision.transforms as transforms
import time
data_transform = {
"train":
transforms.Compose([
transforms.RandomResizedCrop(224), # 随机裁剪为 224 * 224 的图像
transforms.RandomHorizontalFlip(), # 水平翻转,提高训练难度,使网络精度更高
transforms.ToTensor(),
# Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
# Converts a PIL Image or numpy.ndarray (H x W x C) in the range
# [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
# Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels,
# ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
]),
"val":
transforms.Compose([
transforms.Resize((224, 224)), # 缩放图像为 224 * 224, 注意要有()
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
}
# 打开自己的数据集,用torchvision.datasets.ImageFolder()
train_set = tv.datasets.ImageFolder(
root='C:/Users/14251/Desktop/workspace/AlexNet/flower_data/train',
transform=data_transform["train"])
val_set = tv.datasets.ImageFolder(
root='C:/Users/14251/Desktop/workspace/AlexNet/flower_data/val',
transform=data_transform["val"])
train_loader = torch.utils.data.DataLoader(train_set,
batch_size=32,
shuffle=True,
num_workers=0)
val_loader = torch.utils.data.DataLoader(val_set,
batch_size=4,
shuffle=True,
num_workers=0)
# {'daisy':0, 'dandelion':1, 'roses':2, 'sunflower':3, 'tulips':4}
# convert to {0:'daisy', 1:'dandelion', 2:'roses', 3:'sunflower', 4:'tulips'}
train_list = train_set.class_to_idx
data_dict = dict((val, key) for key, val in train_list.items())
# write dict into json file
json_str = json.dumps(data_dict, indent=4)
with open('class_indices.json', 'w') as json_file:
json_file.write(json_str)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net = AlexNet(num_classes=5)
net.to(device)
loss_fun = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=0.0002)
best_accurate = 0.0
for epoch in range(20):
net.train() # use Dropout()
running_loss = 0.0
t1 = time.perf_counter()
for step, data in enumerate(train_loader, start=0):
images, labels = data
optimizer.zero_grad()
outputs = net(images.to(device))
loss = loss_fun(outputs, labels.to(device))
loss.backward()
optimizer.step()
running_loss += loss.item()
# print train process
rate = (step + 1) / len(train_loader)
a = "*" * int(rate * 50)
b = "." * int((1 - rate) * 50)
print("\rtrain loss: {:^3.0f}%[{}->{}]{:.3f}".format(
int(rate * 100), a, b, loss),
end="")
print()
print(time.perf_counter() - t1)
accurate = 0.0
net.eval() # don't use Dropout()
with torch.no_grad():
for val_data in val_loader:
val_images, val_labels = val_data
outputs = net(val_images.to(device)) # [batch, 5]
prediction = torch.max(outputs, dim=1)[1] # 从第1维 5 开始, 求最大值, [1]代表索引
accurate += (prediction == val_labels.to(device)).sum().item()
val_accurate = accurate / len(val_set)
if val_accurate > best_accurate:
best_accurate = val_accurate
torch.save(
net.state_dict(),
'C:/Users/14251/Desktop/workspace/AlexNet/AlexNet_dict.pth')
print('[epoch %d] train_loss: %.3f test_accuracy: %.3f' %
(epoch + 1, running_loss / step, val_accurate))
print('Finished Training')
import torch
from model import AlexNet
import torchvision.transforms as transforms
from PIL import Image
import json
# import matplotlib.pyplot as plt
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
# load image, 单张图像用PIL.Image.Open()
img = Image.open('C:/Users/14251/Desktop/workspace/AlexNet/test.jpg')
# plt.imshow(img)
img = transform(img) # (H, W, C) -> (C, H, W)
img = img.unsqueeze(dim=0) # (C, H, W) -> (N, C, H, W)
# read class_indict
try:
json_file = open('./class_indices.json', 'r')
class_indict = json.load(json_file)
except Exception as e:
print(e)
exit(-1)
net = AlexNet(num_classes=5)
net.load_state_dict(
torch.load('C:/Users/14251/Desktop/workspace/AlexNet/AlexNet_dict.pth'))
net.eval()
# with torch.no_grad():
# outputs = net(img)
# prediction = torch.max(outputs, dim=1)[1].item()
# print(class_indict[str(prediction)])
with torch.no_grad():
# predict class
output = torch.squeeze(net(img))
predict = torch.softmax(output, dim=0)
predict_cla = torch.argmax(predict).numpy()
print(class_indict[str(predict_cla)], predict[predict_cla].item())