Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析

原文链接:http://tecdat.cn/?p=17748

 

在数据科学学习之旅中,我经常处理日常工作中的时间序列数据集,并据此做出预测。

我将通过以下步骤:

探索性数据分析(EDA)

  • 问题定义(我们要解决什么)
  • 变量识别(我们拥有什么数据)
  • 单变量分析(了解数据集中的每个字段)
  • 多元分析(了解不同领域和目标之间的相互作用)
  • 缺失值处理
  • 离群值处理
  • 变量转换

预测建模

  • LSTM
  • XGBoost

问题定义

我们在两个不同的表中提供了商店的以下信息:

  • 商店:每个商店的ID
  • 销售:特定日期的营业额(我们的目标变量)
  • 客户:特定日期的客户数量
  • StateHoliday:假日
  • SchoolHoliday:学校假期
  • StoreType:4个不同的商店:a,b,c,d
  • CompetitionDistance:到最近的竞争对手商店的距离(以米为单位)
  • CompetitionOpenSince [月/年]:提供最近的竞争对手开放的大致年份和月份
  • 促销:当天促销与否
  • Promo2:Promo2是某些商店的连续和连续促销:0 =商店不参与,1 =商店正在参与
  • PromoInterval:描述促销启动的连续区间,并指定重新开始促销的月份。

利用所有这些信息,我们预测未来6周的销售量。

 

# 让我们导入EDA所需的库:

import numpy as np # 线性代数
import pandas as pd # 数据处理,CSV文件I / O导入(例如pd.read_csv)
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime
plt.style.use("ggplot") # 绘图


#导入训练和测试文件:
train_df = pd.read_csv("../Data/train.csv")
test_df = pd.read_csv("../Data/test.csv")


#文件中有多少数据:
print("在训练集中,我们有", train_df.shape[0], "个观察值和", train_df.shape[1], 列/变量。")
print("在测试集中,我们有", test_df.shape[0], "个观察值和", test_df.shape[1], "列/变量。")
print("在商店集中,我们有", store_df.shape[0], "个观察值和", store_df.shape[1], "列/变量。")

在训练集中,我们有1017209个观察值和9列/变量。
在测试集中,我们有41088个观测值和8列/变量。
在商店集中,我们有1115个观察值和10列/变量。

首先让我们清理  训练数据集。

 

#查看数据
train_df.head().append(train_df.tail()) #显示前5行。

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析_第1张图片

 

train_df.isnull().all()
Out[5]:

Store            False
DayOfWeek        False
Date             False
Sales            False
Customers        False
Open             False
Promo            False
StateHoliday     False
SchoolHoliday    False
dtype: bool

让我们从第一个变量开始->  销售量



opened_sales = (train_df[(train_df.Open == 1) #如果商店开业
opened_sales.Sales.describe()
Out[6]:

count    422307.000000
mean       6951.782199
std        3101.768685
min         133.000000
25%        4853.000000
50%        6367.000000
75%        8355.000000
max       41551.000000
Name: Sales, dtype: float64


Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析_第2张图片

 

看一下顾客变量

In [9]:

train_df.Customers.describe()
Out[9]:

count    1.017209e+06
mean     6.331459e+02
std      4.644117e+02
min      0.000000e+00
25%      4.050000e+02
50%      6.090000e+02
75%      8.370000e+02
max      7.388000e+03
Name: Customers, dtype: float64

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析_第3张图片

 
train_df[(train_df.Customers > 6000)]

 

我们看一下假期 变量。

 
train_df.StateHoliday.value_counts()
 
0    855087
0    131072
a     20260
b      6690
c      4100
Name: StateHoliday, dtype: int64

 

train_df.StateHoliday_cat.count()

 

1017209

 

train_df.tail()

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析_第4张图片

 

train_df.isnull().all() #检查缺失
Out[18]:

Store               False
DayOfWeek           False
Date                False
Sales               False
Customers           False
Open                False
Promo               False
SchoolHoliday       False
StateHoliday_cat    False
dtype: bool

让我们继续进行商店分析

 

store_df.head().append(store_df.tail())

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析_第5张图片

 

#缺失数据:


Store                         0.000000
StoreType                     0.000000
Assortment                    0.000000
CompetitionDistance           0.269058
CompetitionOpenSinceMonth    31.748879
CompetitionOpenSinceYear     31.748879
Promo2                        0.000000
Promo2SinceWeek              48.789238
Promo2SinceYear              48.789238
PromoInterval                48.789238
dtype: float64
In [21]:

让我们从缺失的数据开始。第一个是 CompetitionDistance


store_df.CompetitionDistance.plot.box() 

让我看看异常值,因此我们可以在均值和中位数之间进行选择来填充NaN
 

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析_第6张图片

 

缺少数据,因为商店没有竞争。 因此,我建议用零填充缺失的值。

store_df["CompetitionOpenSinceMonth"].fillna(0, inplace = True)

让我们看一下促销活动。

 

store_df.groupby(by = "Promo2", axis = 0).count() 

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析_第7张图片

 

如果未进行促销,则应将“促销”中的NaN替换为零 

我们合并商店数据和训练集数据,然后继续进行分析。

第一,让我们按销售量、客户等比较商店。

 

f, ax = plt.subplots(2, 3, figsize = (20,10))

plt.subplots_adjust(hspace = 0.3)
plt.show()

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析_第8张图片

 

从图中可以看出,StoreType A拥有最多的商店,销售和客户。但是,StoreType D的平均每位客户平均支出最高。只有17家商店的StoreType B拥有最多的平均顾客。

 

我们逐年查看趋势。

 

sns.factorplot(data = train_store_df, 
# 我们可以看到季节性,但看不到趋势。 该销售额每年保持不变


Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析_第9张图片
Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析_第10张图片

 

我们看一下相关图。

  "CompetitionOpenSinceMonth", "CompetitionOpenSinceYear", "Promo2

 

 Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析_第11张图片

 

我们可以得到相关性:

  • 客户与销售(0.82)
  • 促销与销售(0,82)
  • 平均顾客销量 vs促销(0,28)
  • 商店类别 vs 平均顾客销量 (0,44)

我的分析结论:

  • 商店类别 A拥有最多的销售和顾客。
  • 商店类别 B的每位客户平均销售额最低。因此,我认为客户只为小商品而来。
  • 商店类别 D的购物车数量最多。
  • 促销仅在工作日进行。
  • 客户倾向于在星期一(促销)和星期日(没有促销)购买更多商品。
  • 我看不到任何年度趋势。仅季节性模式。

Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析_第12张图片

最受欢迎的见解

1.在python中使用lstm和pytorch进行时间序列预测

2.python中利用长短期记忆模型lstm进行时间序列预测分析

3.使用r语言进行时间序列(arima,指数平滑)分析

4.r语言多元copula-garch-模型时间序列预测

5.r语言copulas和金融时间序列案例

6.使用r语言随机波动模型sv处理时间序列中的随机波动

7.r语言时间序列tar阈值自回归模型

8.r语言k-shape时间序列聚类方法对股票价格时间序列聚类

9.python3用arima模型进行时间序列预测

你可能感兴趣的:(R语言,预测,python,Python,lstm,xgboost,销售量,时间序列)