基于Facecognition+Opencv快速搭建人脸识别及跟踪应用

 

人脸识别技术已经相当成熟,面对满大街的人脸识别应用,像单位门禁、刷脸打卡、App解锁、刷脸支付、口罩检测........

作为一个图像处理的爱好者,怎能放过人脸识别这一环呢!调研开搞,发现了超实用的Facecognition!现在和大家分享下~~

基于Facecognition+Opencv快速搭建人脸识别及跟踪应用_第1张图片

 

Facecognition人脸识别原理大体可分为:
1、通过hog算子定位人脸,也可以用cnn模型,但本文没试过;

2、Dlib有专门的函数和模型,实现人脸68个特征点的定位。通过图像的几何变换(仿射、旋转、缩放),使各个特征点对齐(将眼睛、嘴等部位移到相同位置);

3、训练一个神经网络,将输入的脸部图像生成为128维的预测值。训练的大致过程为:将同一人的两张不同照片和另一人的照片一起喂入神经网络,不断迭代训练,使同一人的两张照片编码后的预测值接近,不同人的照片预测值拉远;

4、将陌生人脸预测为128维的向量,与人脸库中的数据进行比对,找出阈值范围内欧氏距离最小的人脸,完成识别。

 

1 开发环境

PyCharm: PyCharm Community Edition 2020.3.2 x64

Python:Python 3.8.7 

Opencv:opencv-python 4.5.1.48

Facecognition:1.3.0

Dlb:dlb 0.5.0

2 环境搭建

本文不做PyCharm和Python安装,这个自己搞不定,就别玩了~

pip install opencv-python
pip install face-recognition
pip install face-recognition-models
pip install dlb

 

3 打造自己的人脸库

通过opencv、facecogniton定位人脸并保存人脸头像,生成人脸数据集,代码如下:

import face_recognition
import cv2
import os

def builddataset():
    Video_face = cv2.VideoCapture(0)
    num=0
    while True:
        flag, frame = Video_face.read();
        if flag:
            cv2.imshow('frame', frame)
            cv2.waitKey(2)
        else:
            break
        face_locations = face_recognition.face_locations(frame)
        if face_locations:
            x_face = frame[face_locations[0][0]-50:face_locations[0][2]+50, face_locations[0][3]-50:face_locations[0][1]+50];
            #x_face = cv2.resize(x_face, dsize=(200, 200));
            bo_photo = cv2.imwrite("%s\%d.jpg" % ("traindataset/ylb", num), x_face);
            print("保存成功:%d" % num)
            num=num+1
        else:
            print("****未检查到头像****")

    Video_face.release()

if __name__ == '__main__':
    builddataset();
    pass

4、模型训练与保存

通过数据集进行训练,得到人脸识别码,以numpy数据形式保存(人脸识别码)模型

    def __init__(self, trainpath,labelname,modelpath, predictpath):
        self.trainpath = trainpath
        self.labelname = labelname
        self.modelpath = modelpath
        self.predictpath = predictpath

    # no doc
    def train(self, trainpath, modelpath):
        encodings = []
        dirs = os.listdir(trainpath)
        for k,dir in enumerate(dirs):
            filelist = os.listdir(trainpath+'/'+dir)
            for i in range(0, len(filelist)):
                imgname = trainpath + '/'+dir+'/%d.jpg' % (i)
                picture_of_me = face_recognition.load_image_file(imgname)
                face_locations = face_recognition.face_locations(picture_of_me)
                if face_locations:
                    print(face_locations)
                    my_face_encoding = face_recognition.face_encodings(picture_of_me,         
                                       face_locations)[0]
                    encodings.append(my_face_encoding)
        if encodings:
            numpy.save(modelpath, encodings)
            print(len(encodings))
            print("model train is sucess")
        else:
            print("model train is failed")

5、人脸识别及跟踪

通过opencv启动摄像头并获取视频,加载训练好模型完成识别及跟踪,为避免视频卡顿设置了隔帧处理。

    def predicvideo(self,names,model):
        Video_face = cv2.VideoCapture(0)
        num=0
        recongnition=[]
        unknown_face_locations=[]
        while True:
            flag, frame = Video_face.read();
            frame = cv2.flip(frame, 1)  # 镜像操作
            num=num+1
            if flag:
                self.predictpeople(num, recongnition,unknown_face_locations,frame, names, encodings)
            else:
                break
        Video_face.release()

    def predictpeople(self, condition,recongnition,unknown_face_locations,unknown_picture,labels,encodings):
        if condition%5==0:
            face_locations = face_recognition.face_locations(unknown_picture)
            unknown_face_encoding = face_recognition.face_encodings(unknown_picture,face_locations)
            unknown_face_locations.clear()
            recongnition.clear()
            for index, value in enumerate(unknown_face_encoding):
                unknown_face_locations.append(face_locations[index])
                results = face_recognition.compare_faces(encodings, value, 0.4)
                splitresult = numpy.array_split(results, len(labels))
                trueNum=[]
                a1 = ''
                for item in splitresult:
                    number = numpy.sum(item)
                    trueNum.append(number)
                if numpy.max(trueNum) > 0:
                    id = numpy.argsort(trueNum)[-1]
                    a1 = labels[id]
                    cv2.rectangle(unknown_picture,
                                  pt1=(unknown_face_locations[index][1], unknown_face_locations[index][0]),
                                  pt2=(unknown_face_locations[index][3], unknown_face_locations[index][2]),
                                  color=[0, 0, 255],
                                  thickness=2);
                    cv2.putText(unknown_picture, a1,
                                (unknown_face_locations[index][1], unknown_face_locations[index][0]),
                                cv2.FONT_ITALIC, 1, [0, 0, 255], 2);
                else:
                    a1 = "unkown"
                    cv2.rectangle(unknown_picture,
                                  pt1=(unknown_face_locations[index][1], unknown_face_locations[index][0]),
                                  pt2=(unknown_face_locations[index][3], unknown_face_locations[index][2]),
                                  color=[0, 0, 255],
                                  thickness=2);
                    cv2.putText(unknown_picture, a1,
                                (unknown_face_locations[index][1], unknown_face_locations[index][0]),
                                cv2.FONT_ITALIC, 1, [0, 0, 255], 2);
                recongnition.append(a1)
        else:
            self.drawRect(unknown_picture,recongnition,unknown_face_locations)
        cv2.imshow('face', unknown_picture)
        cv2.waitKey(1)

6、结语

通过opencv启动摄像头并获取实时视频,为避免过度卡顿采取隔帧处理;利用Facecognition实现模型的训练、保存、识别,二者结合实现了实时视频人脸的多人识别及跟踪,希望对大家有所帮助~!

 

 

 

你可能感兴趣的:(python,人脸识别,机器学习)