拓扑排序

文章目录

  • 概述
  • 一、应用
  • 三、实现


概述

在图论中,拓扑排序(Topological Sorting)是一个有向无环图(DAG, Directed Acyclic Graph)的所有顶点的线性序列。且该序列必须满足下面两个条件:

1.每个顶点出现且只出现一次。

2.若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面。
有向无环图(DAG)才有拓扑排序,非DAG图没有拓扑排序一说。

通常,一个有向无环图可以有一个或多个拓扑排序序列。


一、应用

拓扑排序通常用来“排序”具有依赖关系的任务。

比如,如果用一个DAG图来表示一个工程,其中每个顶点表示工程中的一个任务,用有向边表示在做任务 B 之前必须先完成任务 A。故在这个工程中,任意两个任务要么具有确定的先后关系,要么是没有关系,绝对不存在互相矛盾的关系(即环路)。

三、实现

根据上面讲的方法,我们关键是要维护一个入度为0的顶点的集合。

图的存储方式有两种:邻接矩阵和邻接表。这里我们采用邻接表来存储图,C++代码如下:

#include
#include 
#include 
using namespace std;

/************************类声明************************/
class Graph
{
     
    int V;             // 顶点个数
    list<int> *adj;    // 邻接表
    queue<int> q;      // 维护一个入度为0的顶点的集合
    int* indegree;     // 记录每个顶点的入度
public:
    Graph(int V);                   // 构造函数
    ~Graph();                       // 析构函数
    void addEdge(int v, int w);     // 添加边
    bool topological_sort();        // 拓扑排序
};

/************************类定义************************/
Graph::Graph(int V)
{
     
    this->V = V;
    adj = new list<int>[V];

    indegree = new int[V];  // 入度全部初始化为0
    for(int i=0; i<V; ++i)
        indegree[i] = 0;
}

Graph::~Graph()
{
     
    delete [] adj;
    delete [] indegree;
}

void Graph::addEdge(int v, int w)
{
     
    adj[v].push_back(w); 
    ++indegree[w];
}

bool Graph::topological_sort()
{
     
    for(int i=0; i<V; ++i)
        if(indegree[i] == 0)
            q.push(i);         // 将所有入度为0的顶点入队

    int count = 0;             // 计数,记录当前已经输出的顶点数 
    while(!q.empty())
    {
     
        int v = q.front();      // 从队列中取出一个顶点
        q.pop();

        cout << v << " ";      // 输出该顶点
        ++count;
        // 将所有v指向的顶点的入度减1,并将入度减为0的顶点入栈
        list<int>::iterator beg = adj[v].begin();
        for( ; beg!=adj[v].end(); ++beg)
            if(!(--indegree[*beg]))
                q.push(*beg);   // 若入度为0,则入栈
    }

    if(count < V)
        return false;           // 没有输出全部顶点,有向图中有回路
    else
        return true;            // 拓扑排序成功
}

你可能感兴趣的:(c++)