线性回归模型是一种线性模型,是为了计算输入变量x与多个输出变量之间的关系。
求得一条直线:
更一般可表达为:
基于L2范数(均方误差)最小化进行模型求解的方法。
假设输入特征的值只有一个:
在线性回归中,最小二乘法就是找到一条直线,使所有样本到这条直线的距离之和最小。
求解!w和b,使得
最小的过程,就是“最小二乘参数估计”。
将E(w,b)分别对w和b求导,可以得到:
import numpy as np
import matplotlib.pyplot as plt
points = np.genfromtxt('data.csv', delimiter=',')
points[0,0]
# 提取points中的两列数据,分别作为x,y
x = points[:, 0]
y = points[:, 1]
# 用plt画出散点图
plt.scatter(x, y)
plt.show()
# 损失函数是系数的函数,另外还要传入数据的x,y
def compute_cost(w, b, points):
total_cost = 0
M = len(points)
# 逐点计算平方损失误差,然后求平均数
for i in range(M):
x = points[i, 0]
y = points[i, 1]
total_cost += ( y - w * x - b ) ** 2
return total_cost/M
# 先定义一个求均值的函数
def average(data):
sum = 0
num = len(data)
for i in range(num):
sum += data[i]
return sum/num
# 定义核心拟合函数
def fit(points):
M = len(points)
x_bar = average(points[:, 0])
sum_yx = 0
sum_x2 = 0
sum_delta = 0
for i in range(M):
x = points[i, 0]
y = points[i, 1]
sum_yx += y * ( x - x_bar )
sum_x2 += x ** 2
# 根据公式计算w
w = sum_yx / ( sum_x2 - M * (x_bar**2) )
for i in range(M):
x = points[i, 0]
y = points[i, 1]
sum_delta += ( y - w * x )
b = sum_delta / M
return w, b
w, b = fit(points)
print("w is: ", w)
print("b is: ", b)
cost = compute_cost(w, b, points)
print("cost is: ", cost)
w is: 1.3224310227553846
b is: 7.991020982269173
cost is: 110.25738346621313
plt.scatter(x, y)
# 针对每一个x,计算出预测的y值
pred_y = w * x + b
plt.plot(x, pred_y, c='r')
plt.show()