- 图像处理篇---图像预处理
Ronin-Lotus
图像处理篇深度学习篇程序代码篇图像处理人工智能opencvpython深度学习计算机视觉
文章目录前言一、通用目的1.1数据标准化目的实现1.2噪声抑制目的实现高斯滤波中值滤波双边滤波1.3尺寸统一化目的实现1.4数据增强目的实现1.5特征增强目的实现:边缘检测直方图均衡化锐化二、分领域预处理2.1传统机器学习(如SVM、随机森林)2.1.1特点2.1.2预处理重点灰度化二值化形态学操作特征工程2.2深度学习(如CNN、Transformer)2.2.1特点2.2.2预处理重点通道顺序
- 【大模型科普】AIGC技术发展与应用实践(一文读懂AIGC)
人工智能
【专栏介绍】⌈⌈⌈人工智能与大模型应用⌋⌋⌋人工智能(AI)通过算法模拟人类智能,利用机器学习、深度学习等技术驱动医疗、金融等领域的智能化。大模型是千亿参数的深度神经网络(如ChatGPT),经海量数据训练后能完成文本生成、图像创作等复杂任务,显著提升效率,但面临算力消耗、数据偏见等挑战。当前正加速与教育、科研融合,未来需平衡技术创新与伦理风险,推动可持续发展。文章目录一、AIGC概述(一)什么是
- 【产品小白】什么是AI产品经理
百事不可口y
产品经理的一步一步人工智能产品经理学习产品运营内容运营用户运营
一、AI产品经理的定义与角色定位AI产品经理是人工智能技术与商业应用之间的核心桥梁,负责将复杂的AI技术转化为满足市场需求的产品。需同时具备技术理解力、商业洞察力和用户思维,既要参与算法选型与数据建模,又要定义产品功能与市场策略,是贯穿产品全生命周期的关键角色。与传统互联网产品经理相比,AI产品经理的独特之处在于:技术深度参与:需理解机器学习、自然语言处理(NLP)、计算机视觉等技术原理,并参与数
- 数据增强:扩充数据集提升模型泛化能力
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1.数据增强的重要性在机器学习领域,模型的泛化能力至关重要。一个泛化能力强的模型能够在未见数据上表现良好,而过拟合的模型则会在训练数据上表现出色,但在新数据上表现糟糕。数据增强是一种有效提升模型泛化能力的技术,它通过对现有数据进行各种变换,人为地扩充数据集,从而增加训练数据的数量和多样性。1.2.数据增强的应用场景数据增强广泛应用于各种机器学习任务中,包括:图像识别:对图像进行旋转
- 数据增强:扩充数据集,提升模型的鲁棒性
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型LLM大模型落地实战指南计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
数据增强:扩充数据集,提升模型的鲁棒性1.背景介绍1.1数据集的重要性在机器学习和深度学习领域中,数据集是训练模型的基础。高质量的数据集对于构建准确、鲁棒的模型至关重要。然而,在现实世界中,获取大量高质量的数据通常是一个巨大的挑战。数据采集过程耗时耗力,而且成本高昂。此外,某些领域的数据存在隐私和安全问题,难以获取。1.2数据集不足的挑战当数据集规模有限时,模型很容易过拟合,无法很好地推广到新的、
- NLP高频面试题(三)——普通RNN的梯度消失和梯度爆炸问题
Chaos_Wang_
NLP常见面试题自然语言处理rnn人工智能
普通RNN(循环神经网络)的梯度消失和梯度爆炸问题是指在训练深层或长序列的RNN模型时出现的两种典型问题:一、梯度消失(VanishingGradient)梯度消失是指在反向传播过程中,梯度逐层传播时变得越来越小,最终趋于接近0,导致模型前层的参数难以更新。原因:在反向传播时,每一层的梯度是通过链式法则计算得到的。因为链式求导中不断乘以一个较小的数值(小于1),随着层数或时间步的增加,梯度将指数级
- flink从kafka读取数据写入clickhouse本地表的实现
Breatrice_li
kafkaflink分布式大数据
实现功能因为直接写clickhouse的分布式表在数据量比较大的时候会有各种问题,所以做了一个flink读取kafka数据然后路由写入到相应的本地表节点,并且关于不同的表的配置信息可以随时更改并设置生效时间。实现流程首先从kafka将数据读取过来然后进行相应的处理及逻辑判断写入到对应的clickhouse表格中最后根据CDC读取来的配置信息进行相应节点的hash路由,直接写入本地表读取kafka数
- demo flink写入kafka_Flink 写入数据到 Kafka
ONES Piece
demoflink写入kafka
Flink写入数据到Kafka前言通过Flink官网可以看到Flink里面就默认支持了不少sink,比如也支持Kafkasinkconnector(FlinkKafkaProducer),那么这篇文章我们就来看看如何将数据写入到Kafka。准备Flink里面支持Kafka0.8、0.9、0.10、0.11.这里我们需要安装下Kafka,请对应添加对应的FlinkKafkaconnector依赖的版
- Flink读取kafka数据并写入HDFS
王知无(import_bigdata)
Flink系统性学习专栏hdfskafkaflink
硬刚大数据系列文章链接:2021年从零到大数据专家的学习指南(全面升级版)2021年从零到大数据专家面试篇之Hadoop/HDFS/Yarn篇2021年从零到大数据专家面试篇之SparkSQL篇2021年从零到大数据专家面试篇之消息队列篇2021年从零到大数据专家面试篇之Spark篇2021年从零到大数据专家面试篇之Hbase篇
- Kafka系列之—向Kafka 写入数据(四)
葛旭朋
Kafkakafka分布式java
一,创建Kafka生产者1.1必选的三个属性1.1.1bootstrap.servers指定broker的地址清单,不需要包含所有的broker地址,生产者会从给定的broker里找到其它broker的信息,建议最少提供两个broker的信息。1.1.2key.serializerbroker希望接收到的消息的键和值都是字节数组。1.1.3value.serializer指定的类会将值序列化。1.
- Kafka 数据写入问题
喝醉酒的小白
DBAkafka分布式
目录标题分析思路1.**生产者配置问题**:Kafka生产者的配置参数生产者和消费者的处理确定并优化2.**网络问题**:3.**Kafka集群配置问题**:unclean.leader.election.enable4.**Zookeeper配置问题**:5.**JVM参数调优**:6.**副本因子和同步复制**:分析思路针对您提到的Kafka数据写入问题,以下是一些具体的原因和排查命令:1.生
- 使用TensorFlow、OpenCV和Pygame实现图像处理与游戏开发
UwoiGit
tensorflowopencvpygame
在本篇文章中,我们将介绍如何结合使用TensorFlow、OpenCV和Pygame来进行图像处理和游戏开发。这三个工具在机器学习、计算机视觉和游戏开发领域都非常流行,并且它们的结合可以提供强大的功能和无限的创造力。我们将逐步介绍如何安装和配置这些工具,并提供相关的源代码示例。安装TensorFlowTensorFlow是一个基于数据流图的开源机器学习框架,提供了丰富的工具和库来构建和训练各种深度
- 【Kafka】Kafka写入数据
此木|西贝
Kafkakafka分布式
不管是把Kafka作为消息队列还是数据存储平台,总是需要一个可以往Kafka写入数据的生产者,一个可以从Kafka读取数据的消费者。生产者创建一个ProducerRecord对象,包含目标topic和发送的内容;另外可以指定键、分区、时间戳或标头对数据进行分区;如果没有显示指定分区,数据将会传给分区器,确定往哪个主题和分区发送数据。消息添加到一个消息批次,该批次所有的消息被发送到同一个主题和分区;
- 机器学习之KMeans算法
知舟不叙
机器学习算法kmeans
文章目录引言1.KMeans算法简介2.KMeans算法的数学原理3.KMeans算法的步骤3.1初始化簇中心3.2分配数据点3.3更新簇中心3.4停止条件4.KMeans算法的优缺点4.1优点4.2缺点5.KMeans算法的应用场景5.1图像分割5.2市场细分5.3文档聚类5.4异常检测6.Python实现KMeans算法7.总结引言KMeans算法是机器学习中最经典的无监督学习算法之一,广泛应
- 机器学习流程—数据预处理 清洗
不二人生
机器学习机器学习人工智能数据预处理
文章目录机器学习流程—数据预处理清洗定义问题数据预处理数据加载与展示重复数据处理数据类型空值处理无关特征删除数据分布删除异常值生成标签和特征数据分割机器学习流程—数据预处理清洗数据处理是将数据从给定形式转换为更可用和更理想的形式的任务,即使其更有意义、信息更丰富。使用机器学习算法、数学建模和统计知识,整个过程可以自动化。这个完整过程的输出可以是任何所需的形式,如图形、视频、图表、表格、图像等等,具
- 深度革命:ResNet 如何用 “残差连接“ 颠覆深度学习
安意诚Matrix
机器学习笔记深度学习人工智能
一文快速了解ResNet创新点在深度学习的历史长河中,2015年或许是最具突破性的一年。这一年,微软亚洲研究院的何恺明团队带着名为ResNet(残差网络)的模型横空出世,在ImageNet图像分类竞赛中以3.57%的错误率夺冠,将人类视觉的识别误差(约5.1%)远远甩在身后。更令人震撼的是,ResNet将神经网络的深度推至152层,彻底打破了"深层网络无法训练"的魔咒。这场革命的核心,正是一个简单
- 什么是Apache Avro?
maozexijr
apache
什么是ApacheAvro?ApacheAvro是一个开源的数据序列化框架,主要用于高效的数据交换和存储。它由ApacheHadoop项目开发,广泛应用于大数据生态系统中(如Hadoop、Kafka等)。Avro提供了一种紧凑、快速的二进制数据格式,同时支持丰富的数据结构和模式演化。核心特性跨语言支持Avro支持多种编程语言(如Java、Python、C++、Go等),使得不同语言之间的数据交换变
- Apache Storm:实时数据处理的闪电战
Aaron_945
Javaapachestorm大数据
文章目录ApacheStorm原理拓扑结构数据流处理容错机制官网链接基础使用安装与配置编写拓扑提交与运行高级使用状态管理窗口操作多语言支持优点高吞吐量低延迟可扩展性容错性总结ApacheStorm是一个开源的分布式实时计算系统,它允许你以极高的吞吐量处理无界数据流。Storm被广泛用于实时分析、在线机器学习、连续计算等多种场景。本文将深入探讨ApacheStorm的原理、基础使用、高级特性及其优点
- 知识蒸馏:从软标签压缩到推理能力迁移的工程实践(基于教师-学生模型的高效压缩技术与DeepSeek合成数据创新)
AI仙人掌
人工智能AI人工智能深度学习语言模型机器学习
知识蒸馏通过迁移教师模型(复杂)的知识到学生模型(轻量),实现模型压缩与性能平衡。核心在于利用教师模型的软标签(概率分布)替代独热编码标签,学生模型不仅学习到教师模型输出数据的类别信息,还能够捕捉到类别之间的相似性和关系,从而提升其泛化能力核心概念知识蒸馏的核心目标是实现从教师模型到学生模型的知识迁移。在实际应用中,无论是大规模语言模型(LLMs)还是其他类型的神经网络模型,都会通过softmax
- kafka相关问题
给我个面子中不
Java学习kafka分布式java
Kafka通过事务机制与幂等性功能相结合,实现了跨会话的幂等性。以下是详细解释:kafka是怎么通过事物保证跨会话的幂等性?1.幂等性与跨会话幂等性幂等性:指相同的操作被执行多次,其结果是一样的。在Kafka中,主要是指生产者发送相同的消息不会导致重复。跨会话幂等性:在生产者会话关闭并重启后,Kafka仍能保证发送的消息不会被重复处理。2.Kafka的幂等性原理Kafka的幂等性主要通过Produ
- 什么是机器视觉3D引导大模型
视觉人机器视觉
机器视觉3D3d数码相机机器人人工智能大数据
机器视觉3D引导大模型是结合深度学习、多模态数据融合与三维感知技术的智能化解决方案,旨在提升工业自动化、医疗、物流等领域的操作精度与效率。以下从技术架构、行业应用、挑战与未来趋势等方面综合分析:一、技术架构与核心原理多模态数据融合与深度学习3D视觉引导大模型通常整合RGB图像、点云数据、深度信息等多模态输入,通过深度学习算法(如卷积神经网络、Transformer)进行特征提取与融合。例如,油田机
- Python 机器学习 基础 之 学习 基础环境搭建
仙魁XAN
Python机器学习基础+实战案例python学习开发语言机器学习machinelearning
Python机器学习基础之学习基础环境搭建目录Python机器学习基础之学习基础环境搭建一、简单介绍二、什么是机器学习三、python环境的搭建1、Python安装包下载2、这里以下载Python3.10.9为例3、安装Python3.10.94、检验python是否安装成功,win+R快捷打开运行,输入cmd,打开cmd四、Pycharm环境搭建1、下载Pycharm安装包2、安装Pycharm
- 【机器学习】主成分分析法(PCA)
若兰幽竹
机器学习机器学习信息可视化人工智能
【机器学习】主成分分析法(PCA)一、摘要二、主成分分析的基本概念三、主成分分析的数学模型五、主成分分析法目标函数公式推导(`梯度上升法`求解目标函数)六、梯度上升法求解目标函数第一个主成分七、求解前n个主成分及PCA在数据预处理中的处理步骤(后续实现)一、摘要本文主要讲述了主成分分析法(PCA)的原理和应用。PCA通过选择最重要的特征,将高维数据映射到低维空间,同时保持数据间的关系,实现降维和去
- 用户行为路径分析(Google Analytics数据挖掘)
闲人编程
Python数据分析实战精要数据挖掘人工智能用户行为路径分析Analytics数据分析用户习惯
目录用户行为路径分析(GoogleAnalytics数据挖掘)1.引言2.项目背景与意义2.1用户行为路径的重要性2.2GoogleAnalytics数据概述2.3数据规模与挑战3.数据集生成与介绍4.数据预处理与GPU加速5.用户行为路径分析方法5.1用户行为路径构建5.2行为路径挖掘与模式分析5.3常用指标计算6.数据可视化与指标展示7.PyQtGUI设计与实现8.GPU加速与性能优化9.系统
- 深入探索 PyTorch 在语音识别中的应用
Zoro|
PyTorchDeepLearning机器学习pytorch语音识别人工智能
深入探索PyTorch在语音识别中的应用在本篇博客中,我将分享如何使用PyTorch进行语音识别任务,重点围绕环境配置、数据预处理、特征提取、模型设计以及模型比较展开。本文基于最近一次机器学习作业(HW2)的任务内容,任务目标是对语音信号进行逐帧音素预测,从而完成多类别分类任务。一、介绍任务背景任务目标:利用深度神经网络对语音信号进行逐帧音素预测。音素定义:音素是语音中能够区分单词的最小语音单位。
- MNIST数据集&手写数字识别
Zoro|
kerastensorflow人工智能机器学习
TensorFlow是一个开源的机器学习框架,由Google开发并发布。它提供了一种基于数据流图的编程模型,用于构建和训练机器学习模型。TensorFlow的核心概念是张量(Tensor)和流图(Graph)。张量是TensorFlow中的基本数据单位,可以理解为多维数组,可以是标量、向量、矩阵或更高维度的数组。流图是由一系列操作(Operation)和张量组成的。操作定义了计算和转换张量的方式。
- 深度学习五大模型:CNN、Transformer、BERT、RNN、GAN详细解析
深度学习
卷积神经网络(ConvolutionalNeuralNetwork,CNN)原理:CNN主要由卷积层、池化层和全连接层组成。卷积层通过卷积核在输入数据上进行卷积运算,提取局部特征;池化层则对特征图进行下采样,降低特征维度,同时保留主要特征;全连接层将特征图展开为一维向量,并进行分类或回归计算。CNN利用卷积操作实现局部连接和权重共享,能够自动学习数据中的空间特征。适用场景:广泛应用于图像处理相关的
- OpenLSD是一个自适应开源数据集,旨在支持逻辑综合中的多种机器学习任务。
数据集
2024-11-14,由中国科学院计算技术研究所、鹏城实验室和北京大学等联合创建OpenLSD数据集,目的为逻辑综合过程中的机器学习任务提供一个自适应的数据集生成框架。该数据集的核心研究问题是如何在逻辑综合的三个基本步骤——布尔表示、逻辑优化和技术映射中,通过机器学习方法提升效率和质量。一、研究背景:逻辑综合是电子设计自动化(EDA)流程中的关键环节,它负责将高级设计规范转化为门级网络列表。近年来
- 【Python】测试数据生成工具 --- Faker
pythonfaker数据分析
Faker库介绍Faker是一个强大的库,能够帮助开发者和测试人员生成大量的假数据,但这些数据看起来却非常真实。它支持生成多种类型的数据,如姓名、地址、公司名称、电子邮件等,甚至能够根据不同国家的特定文化生成相应的数据。Faker的应用不仅限于测试,它还广泛应用于数据分析、机器学习训练集的准备以及任何需要大量样本数据的场景。Faker安装前提:已安装python、pip安装命令如下:pipinst
- 未来5年AI人工智能与信息技术领域发展趋势
海宁不掉头发
人工智能软件工程人工智能人工智能软件工程笔记chatgpt
未来五年人工智能与信息技术领域发展趋势深度解析一、人工智能与神经网络技术的突破路径(一)算法架构的范式革新深度神经网络正经历从量变到质变的演进。以Transformer为核心的序列建模技术持续迭代,字节跳动云雀模型通过动态结构优化,在保持语言理解能力的同时将参数量压缩至GPT-4的1/10,推理速度提升3倍。更值得关注的是类脑计算的突破,中国科学院自动化研究所提出"基于内生复杂性"的类脑神经元模型
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的