- 【python数据分析】数据建模之Kmeans聚类
斑点鱼 SpotFish
python数据建模聚类python数据分析
K-means聚类:最常用的机器学习聚类算法,且为典型的基于距离的聚类算法。K均值:基于原型的、划分的距离技术,它试图发现用户指定个数(K)的簇以欧式距离作为相似度测度Kmeans聚类案例分析:make_blobs聚类数据生成器#导入模块from sklearn.cluster import KMeansfromsklearn.datasetsimportmake_blobs#创建数据x,y_tr
- 【无标题】
书桐先生
python前端开发语言
✅什么是KMeans聚类?为什么要用它?通俗解释:KMeans聚类就像“自动分类器”,它根据像素的灰度值,把整张图分成亮度不同的几类区域。比如,把黑色背景、亮一点的重影、最亮的主影区分开。为什么用它:图像中的亮度差异很明显:背景暗(低灰度)重影比背景亮但比主影暗主影最亮KMeans可以自动分组像素,不需要手动设阈值,适应性强,适用于批量图像处理。✅什么是“形态学去噪”?用来干什么?通俗解释:形态学
- 【数据挖掘】期末复习模拟题(暨考试题)
chaser&upper
数据分析随笔小记数据挖掘python聚类
数据挖掘-期末复习试题挑战全网最全题库单选题多选题判断题填空题程序填空sigmoid曼哈顿距离泰坦尼克号披萨价格预测鸢尾花DBSCN密度聚类决策树购物表单-关联规则火龙果-关联分析数据非线性映射高斯朴素贝叶斯分类器手写数字识别k1-10聚类平均偏差程序分析PM2.5线性回归Titanic数据清洗KNN鸢尾花Kmeans聚类KNN电影分类频繁k项集混淆矩阵OverlookMOOC总结挑战全网最全题库
- 机器学习算法_聚类KMeans算法
TY-2025
机器学习机器学习算法聚类
一、聚类算法分析1.概念概念:根据样本之间的相似性,将样本划分到不同的类别中;不同的相似度的计算方法,会得到不同的聚类结果,常见的相似度计算方法有欧氏距离法(无监督算法)聚类算法的目的是在没有先验知识的情况下,自动发现数据集中的内在结构和模式2.聚类算法分类(1)根据聚类颗粒度分类个数比较多的,细聚类;个数比较多的,粗聚类(2)根据实现方法分类K-means:按照质心分类层次聚类:对数据进行逐层划
- 机器学习15-2(Mini Batch Kmeans)
Roy_Allen
MachineL机器学习batchkmeans
文章目录简介MiniBatchK-MeansDBSCAN基本原理具体实现简介除了K-Means快速聚类意外,还有两种常用的聚类算法能够进一步提升快速聚类的速度的MiniBatchK-Means算法能够和K-Means快速聚类形成性能上互补的算法DBSCAN密度聚类MiniBatchK-Means非常抱歉,需要先来一段理论基础做铺垫,速览即可!在K-Means的基础上增加了一个MiniBatch的抽
- 基于PCA和Kmeans的餐馆地区分类研究
1.实践任务说明对《中国2019年分地区连锁餐饮企业数据》中的7个经营指标(V2-V8)进行主成分分析(PCA),通过降维提取核心特征。首先标准化数据,然后计算主成分的方差贡献率,按累积贡献率≥85%确定保留的主成分数量,最终输出降维后的主成分得分及因子载荷矩阵,简化后续分析。基于K-Means聚类算法对餐饮企业数据进行分析,首先读取true_restaurant.csv文件中的PC1指标数据并进
- 5.11 day17
知识点聚类的指标聚类常见算法:kmeans聚类、dbscan聚类、层次聚类三种算法对应的流程实际在论文中聚类的策略不一定是针对所有特征,可以针对其中几个可以解释的特征进行聚类,得到聚类后的类别,这样后续进行解释也更加符合逻辑。聚类的流程标准化数据选择合适的算法,根据评估指标调参()将聚类后的特征添加到原数据中原则t-sne或者pca进行2D或3D可视化KMeans和层次聚类的参数是K值,选完k指标
- Day18 推断聚类后簇的类型
cylat
python打卡聚类机器学习人工智能
1.推断簇含义的2个思路:先选特征和后选特征#选择k值selected_k=3#这里选择3后面好分析,也可以根据图选择最佳的k值#使用选择的k值进行KMeans聚类kmeans=KMeans(n_clusters=selected_k,random_state=42)kmeans_labels=kmeans.fit_predict(X_scaled)X['KMeans_Cluster']=kmea
- python 3d绘图kmeans_使用python绘制3d的图形
weixin_39662721
python3d绘图kmeans
机器学习里面通常需要寻找代价函数的最小值,所有如果可以把图形绘制出来,对于初学者分析起来就会简明很多。下面取一个例子,绘制z=x²+y²,(x,y的取值范围是[-5,5])实现的代码:importmatplotlib.pyplotaspltimportnumpyasnpimportpandasaspdfrommpl_toolkits.mplot3dimportAxes3D#创建一个Axes3d对象
- KMeans, KNN, Meanshift
机器灵
基础算法理论KMeansKNNMeanshift
这三个玩意,因为要么带K,要么带Mean,所以吗,放在一起介绍一下:Meanshift因为我本身是图像处理出身,最早接触的是Meanshift,其经常用于图像分割,目标跟踪等方面,下面首先说一下Meanshift:算法步骤:在未被标记的数据点中随机选择一个点作为起始中心点center;找出以center为中心半径为radius的区域中出现的所有数据点,认为这些点同属于一个聚类C。同时在该聚类中记录
- 基于Openai预训练模型VIT-B的图像分类
⃢━⃢
ubuntu机器学习深度学习pytorchopenai分类
基于Openai预训练模型VIT-B的图像分类前言因为我刚开始是想利用与训练的模型VIT-B/32等来得到图像和文本的编码,然后用一些机器学习的模型训练分类的。但是我训练的最高的正确率(每个类训练就使用4张图片)也就在62%左右,所以准备换思路了。这个代码也就没啥用了因为有比赛要求所以每个类就选了4张图片作为训练集,具体选择使用了KMeans聚类,所以如果想要直接应用的话使用全部的训练集应该效果会
- Python 打卡训练营 Day17
宸汐Fish_Heart
python开发语言
DAY17知识点聚类的指标聚类常见算法:kmeans聚类、dbscan聚类、层次聚类三种算法对应的流程实际在论文中聚类的策略不一定是针对所有特征,可以针对其中几个可以解释的特征进行聚类,得到聚类后的类别,这样后续进行解释也更加符合逻辑。聚类的流程标准化数据选择合适的算法,根据评估指标调参()KMeans和层次聚类的参数是K值,选完k指标就确定DBSCAN的参数是eps和min_samples,选完
- 三种常见的聚类算法的python实现 kmeans、Hierarchical clustering、kmedoids
weixin_33725722
python数据结构与算法人工智能
聚类是机器学习、数据挖掘相关的一类很常见的问题。关于聚类算法的介绍这里就不多写了,因为无论是教科书还是网络上都有太多的资料了。这里,用一个《ProgrammingCollectiveIntelligence》中的聚类例子,写几个经典聚类算法的实现,分别是hierachiclaCluster、kmeans、kmedoids。另外,最近一直在看数据挖掘、自然语言处理相关的东西,通过看资料发现有些东西很
- C#:实现聚类K-means cluster算法 (附完整源码)
源代码大师
C#算法完整教程算法c#聚类
C#:实现聚类K-meanscluster算法以下是CSharp实现聚类K-meanscluster算法的源代码:usingSystem;usingSystem.Collections.Generic;usingSystem.Linq;namespaceKMeansCluster{publiccl
- 说话人分离中的聚类方法:深入解析Agglomerative聚类、KMeans聚类和Oracle聚类
CyreneSimon
聚类kmeansoracle
说话人分离(SpeakerDiarization)是将音频流根据说话人身份划分为同质片段的过程。这一过程中的关键步骤是聚类,即将说话人嵌入(embeddings)分组为不同的簇,每个簇代表一个独特的说话人。在pyannote.audio`管道中使用的三种聚类方法:层次聚类(AgglomerativeClustering)、KMeans聚类(KMeansClustering)和Oracle聚类(Or
- 通过k-means对相似度较高的语句进行分类
fallwind_of_july
kmeans算法java
本文介绍了如何使用K-Means算法对相似度较高的语句进行分类,并附上java案例代码importjava.util.ArrayList;importjava.util.List;importjava.util.Random;publicclassKMeansTextClustering{publicstaticvoidmain(String[]args){//初始化语句数据集Listtexts=
- 真正适合小白的机器学习入门(python基础小白也能行)
一心向上的小奥
机器学习入门机器学习python人工智能
算法一Kmeans聚类原理:K-Means是一种非常经典的聚类算法,其基本思想是:基于给定的数据点集合,通过迭代过程寻找k个聚类中心,使得各数据点到其最近聚类中心的距离之和最小。方法概述:初始化:随机选择k个数据点作为初始的聚类中心。分配:将每个数据点分配给最近的聚类中心。更新:根据分配的结果,重新计算每个聚类的中心。重复:重复步骤2和步骤3,直到聚类中心不再改变或达到最大迭代次数代码实现impo
- 详解如何通过Python的BeautifulSoup爬虫+NLP标签提取+Dijkstra规划路径和KMeans聚类分析帮助用户规划旅行路线
mosquito_lover1
pythonbeautifulsoup爬虫kmeans自然语言处理
系统模块:数据采集模块(爬虫):负责从目标网站抓取地点数据(如名称、经纬度、描述等)数据预处理模块(标签算法):对抓取到的地点数据进行清洗和分类。根据地点特征(如经纬度、描述文本)打上标签(如“适合家庭”、“适合冒险”)。地理数据处理模块(地图API):使用地图API获取地点的详细信息(如地址、距离、路径等)。计算地点之间的距离或路径。路径规划模块:根据用户输入的起点和终点,规划最优路径。支持多种
- 机器学习之KMeans算法
知舟不叙
机器学习算法kmeans
文章目录引言1.KMeans算法简介2.KMeans算法的数学原理3.KMeans算法的步骤3.1初始化簇中心3.2分配数据点3.3更新簇中心3.4停止条件4.KMeans算法的优缺点4.1优点4.2缺点5.KMeans算法的应用场景5.1图像分割5.2市场细分5.3文档聚类5.4异常检测6.Python实现KMeans算法7.总结引言KMeans算法是机器学习中最经典的无监督学习算法之一,广泛应
- 《基于机器学习的负荷曲线聚类算法对比与改进:K-L-isodata的创新性研究》
TWHiwhjig
机器学习算法聚类
基于机器学习的负荷曲线聚类包括kmeansisodata和改进的L-isodata以及在其基础上再次进行改进的K-L-isodata(有创新性),四者通过评价指标进行了对比精品代码可修改性极高有参考文献ID:93150688324967700自律的电气人基于机器学习的负荷曲线聚类是一种基于数据分析和模式识别的技术,它可以帮助我们对系统的负荷变化进行分类和理解。在负荷曲线聚类的研究中,K-means
- 【Python机器学习】2.2. 聚类分析算法理论:K均值聚类(KMeans Analysis)、KNN(K近邻分类)、均值漂移聚类(MeanShift)
SomeB1oody
Python机器学习机器学习算法python聚类分类算法
喜欢的话别忘了点赞、收藏加关注哦(关注即可查看全文),对接下来的教程有兴趣的可以关注专栏。谢谢喵!(=・ω・=)2.2.1.K均值聚类(KMeansAnalysis)K均值算法是以空间中K个点为中心进行聚类,对最靠近他们的对象归类,是聚类算法中最为基础但也最为重要的算法。数学原理计算数据点与各簇中心点的距离:dist(xi,ujt){dist}(x_i,u_j^t)dist(xi,ujt)然后根据
- python手写kmeans算法
菜鸟懿
机器学习聚类算法python
kmean聚类是最基础和常见的算法,工程上使用比较常见,spark,sklearn都有实现,本文手写实现kmeans#!/usr/bin/pythonimportsysimportrandomimportmathdefcreate_rand_points(max_x,max_y,count):"""Createcountpoints(0-x),(0-y)."""points=[]foriinran
- 大数据技术【7】
星绘搜题
bigdata数据挖掘大数据
1.目前所获取的总数据量的80%以上都是()数据。。A.结构化B.非结构化C.文本D.半结构化2.Kmeans算法包括如下步骤:①在第j次迭代中,对于每个样本点,选取最近的中心点,归为该类;②更新中心点为每类的均值;③随机选取k个中心点;④j选择一项:a.③①②④b.①②③④c.①④③②d.④③②①A.③①②④B.①②③④C.①④③②D.④③②①3.利用先验原理可以帮助减少频繁项集产生时需要探查的
- 文本挖掘+情感分析+主题建模+K-Meas聚类+词频统计+词云(景区游客评论情感分析)
请为小H留灯
聚类机器学习支持向量机人工智能深度学习
本文通过情感分析技术对景区游客评论进行深入挖掘,结合数据预处理、情感分类和文本挖掘,分析游客评价与情感倾向。利用朴素贝叶斯和SVM等模型进行情感预测,探讨满意度与情感的关系。通过KMeans聚类和LDA主题分析,提取游客关心的话题,提供优化建议,为未来研究提供方向。1.引言1.1背景与目的1.2旅游业发展与游客评论的重要性2.数据处理与分析2.1数据加载与预处理2.2游客评分与点赞量分析3.评论内
- KMeans实战——聚类和轮廓系数评估啤酒数据集
巷955
机器学习人工智能
原理:在数据分析和机器学习中,聚类是一种常用的无监督学习方法,用于将数据集中的样本划分为若干个簇,使得同一簇内的样本相似度较高,而不同簇之间的样本相似度较低。KMeans算法是其中最常用的聚类算法之一。本文将介绍如何使用KMeans算法对啤酒数据集进行聚类,并使用轮廓系数(SilhouetteScore)来评估聚类结果的质量。1.数据准备首先,我们需要导入必要的库并加载数据集。本文使用的数据集是一
- 机器学习之KMeans算法
Mr终游
机器学习机器学习算法kmeans
目录一、KMeans的核心思想二、KMeans算法流程三、KMeans的关键点1.优点:2.缺点:四、如何确定最佳k值1.肘部法则2.轮廓系数五、Kmeans的典型应用场景六、代码示例KMeans是一种广泛使用的无监督学习算法,主要用于聚类分析(Clustering)。它的目标是将数据集划分为K个互不重叠的子集(簇,Cluster),使得同一簇内的数据点尽可能相似,不同簇之间的数据点尽可能差异显著
- [Machine Learning] K-means算法
进阶的小蜉蝣
machinelearning算法kmeans机器学习
HuBERT预训练过程中会用到K-means算法,本文简单介绍一下K-means算法的基本流程。简单地讲,K-means就是给特征向量集进行聚类。给定一个特征向量集{X}和目标聚类数N,K-means会不断迭代,直到X被分成N类,且每一类的中心点不再明显变化。先看一个简单例子:fromsklearn.clusterimportKMeansimportnumpyasnpimportmatplotli
- AI人工智能机器学习之聚类分析
rockfeng0
人工智能机器学习sklearn
1、概要 本篇学习AI人工智能机器学习之聚类分析,以KMeans、AgglomerativeClustering、DBSCAN为例,从代码层面讲述机器学习中的聚类分析。2、聚类分析-简介聚类分析是一种无监督学习的方法,用于将数据集中的样本划分为不同的组(簇),使得同一组中的样本相似度较高,而不同组之间的样本相似度较低。sklearn.cluster提供了多种聚类算法K均值聚类(K-MeansCl
- KMeans聚类实战2
浊酒南街
#kmeans聚类python
目录NBA球员聚类--未知k值的情况NBA球员聚类–未知k值的情况#导入第三方模块importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.clusterimportKMeansfromsklearnimportmetricsimportseabornassnsfromsklearnimportpreprocess
- KMeans聚类实战1
浊酒南街
#kmeans聚类算法
目录iris聚类--已知k值的情况iris聚类–已知k值的情况#导入第三方模块importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.clusterimportKMeansfromsklearnimportmetricsimportseabornassns#读取iris数据集iris=pd.read_csv(r'
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数