- 目标检测YOLO实战应用案例100讲-基于深度学习的自动驾驶目标检测算法研究(续)
林聪木
目标检测YOLO深度学习
目录基于双蓝图卷积的轻量化自动驾驶目标检测算法5.1引言5.2DarkNet53网络冗余性分析5.3双蓝图卷积网络5.4实验结果及分析基于深度学习的自动驾驶目标检测算法研究与应用传统的目标检测算法目标检测基线算法性能对比与选择相关理论和算法基础2.1引言2.2人工神经网络2.3FCOS目标检测算法2.4复杂交通场景下的目标检测难点与FCOS改进方案基于FCOS的目标检测算法改进3.1引言3.2Re
- 使用TVM编译部署DarkNet模型:YOLO-V2和YOLO-V3实战指南
周情津Raymond
使用TVM编译部署DarkNet模型:YOLO-V2和YOLO-V3实战指南tvm-cnTVMDocumentationinChineseSimplified/TVM中文文档项目地址:https://gitcode.com/gh_mirrors/tv/tvm-cn前言在深度学习模型部署领域,TVM作为一个高效的深度学习编译器栈,能够将训练好的模型优化并部署到各种硬件平台上。本文将详细介绍如何使用T
- YOLOv4 正负样本划分详解
要努力啊啊啊
计算机视觉YOLO目标检测深度学习计算机视觉目标跟踪
✅YOLOv4正负样本划分详解一、前言在目标检测中,正负样本划分是训练过程中的关键环节,它决定了哪些预测框参与损失计算,从而影响模型的学习效果。YOLOv4在YOLOv3的基础上进行了改进,包括:使用CSPDarknet53主干网络;引入PANet特征融合结构;支持Mosaic数据增强;使用CIoULoss和DIoU-NMS;但在正样本划分逻辑上,YOLOv4保持了与YOLOv3类似的设计方式,并
- 深度学习 backbone,neck,head网络关键组成
SLAM必须dunk
深度学习人工智能
在深度学习,尤其是计算机视觉任务中,backbone(骨干网络),neck(颈部),head(头部)是网络的关键组成部分,各自承担了不同的功能:1,总署:Backbone,译作骨干网络,主要指用于特征提取的,已在大型数据集(例如ImageNet|COCO等)上完成预训练,拥有预训练参数的卷积神经网络,例如:ResNet-50、Darknet53等;Head,译作检测头,主要用于预测目标的种类和位置
- YOLO进化史:从v1到v12的注意力革命 —— 实时检测的“快”与“准”如何兼得?
摘取一颗天上星️
YOLO
⚙️一、初代奠基:打破两阶段检测的垄断(2016-2018)YOLOv1(2016):首次提出“单次检测”范式,将目标检测转化为回归问题。7×7网格+30维向量输出,实现45FPS实时检测,但小目标漏检严重。YOLOv2(2017):引入锚框(AnchorBoxes),通过k-means聚类确定先验框尺寸新增高分辨率微调(448×448输入)使用Darknet-19主干,速度达67FPSYOLOv
- YOLOv3目标检测实战
宁安我
YOLO目标检测人工智能
YOLOv3目标检测实战:从理论到代码实现目录YOLOv3目标检测实战:从理论到代码实现1.引言2.YOLOv3的核心原理2.1网络结构2.2锚框(AnchorBoxes)2.3损失函数2.4预测流程3.案例:使用YOLOv3进行目标检测3.1数据集准备3.2模型定义3.2.1Darknet-53主干网络3.2.2YOLOv3检测头3.3训练与优化3.3.1损失函数3.3.2训练脚本3.4模型推理
- YOLOv3 目标检测算法深度解析
mozun2020
DL1:深度学习YOLO目标检测算法计算机视觉人工智能目标识别
YOLOv3目标检测算法深度解析一、算法原理与核心创新1.1算法设计哲学YOLOv3(YouOnlyLookOnceversion3)作为YOLO系列的第三代算法,延续了单阶段检测范式,通过端到端的回归策略实现实时目标检测。其核心设计目标是在保持检测速度优势的同时,显著提升多尺度目标检测能力,尤其针对小目标检测和复杂场景优化。1.2关键技术创新点1.2.1Darknet-53骨干网络残差连接:引入
- 计算机视觉——对比YOLOv12、YOLOv11、和基于Darknet的YOLOv7的微调对比摘要目标检测领域取得了巨大进步,其中YOLOv12、YOLOv11和基于Darknet的YOLOv
Ttcoffee_2048
python自学经验分享笔记灌灌灌灌
摘要目标检测领域取得了巨大进步,其中YOLOv12、YOLOv11和基于Darknet的YOLOv7在实时检测方面表现出色。尽管这些模型在通用目标检测数据集上表现卓越,但在HRSC2016-MS(高分辨率舰船数据集)上对YOLOv12进行微调时,却面临着独特的挑战。本文提供了一个详细的端到端流程,用于在HRSC2016-MS上微调YOLOv12、YOLOv11和基于Darknet的YOLOv7。它
- 从零开始:YOLOv4 目标检测实战指南 (环境配置、训练到优化全流程)
LIUDAN'S WORLD
YOLO系列教程YOLO目标检测人工智能
本篇博客将带你一步步从零开始,完成YOLOv4的环境配置、数据集准备与训练,并涵盖常见的优化和问题解决。本文将以Darknet框架下的YOLOv4实现为主,因为它是由YOLOv4原作者团队维护和优化的官方版本,能够提供最原汁原味的体验和性能。我们将涵盖以下内容:环境配置详解:Python、CUDA、cuDNN、GCC、Make等前置依赖,以及Darknet的编译。数据集准备与预处理:目标检测数据集
- YOLOv2训练详细实践指南
LIUDAN'S WORLD
YOLO系列教程YOLO目标检测
1.YOLOv2架构与原理详解1.1核心改进点YOLOv2相比YOLOv1的主要改进:采用Darknet-19作为backbone(相比VGG更高效)引入BatchNormalization提高稳定性与收敛速度使用anchorboxes机制代替直接预测边界框引入维度聚类确定anchorboxes尺寸使用passthrough层融合高分辨率特征支持多尺度训练适应不同输入尺寸采用新的分类树结构支持更多
- yolo模型学习笔记——4——yolov4相比与yolov3的优点
Summit-
YOLO学习笔记
1.网络结构和架构的改变(1)yolov3使用darknet-53的主干网络,该网络基于残差结构(2)yolov4使用CSPDarknet53,增强版darknet-53,具有更高的计算效率和更好的特征提取能2.优化技术(1)yolov3使用了基础的数据增强技术(如翻转、裁剪、亮度调整等),并且使用了自适应锚框来匹配目标的大小(2)yolov41.Mosaic数据增强这是一种新的数据增强方法,通过
- 【ROS】Darknet_ROS YOLO V3 部署自训练模型 目标检测
Abaaba+
YOLO目标检测人工智能
【ROS】Darknet_ROSYOLOV3目标检测前言整体思路安装依赖项检查克隆源码编译与构建准备文件1.权重文件(xf_real.weights)2.配置文件(xf_real.cfg)3.模型配置文件(xf_real.yaml)修改配置ros.yamldarknet_ros.launch使用与测试前言本文适用于已掌握YOLOv3和Darknet基础知识的读者,旨在帮助大家快速在ROS上部署自定
- 深入探究YOLO系列的骨干网路
编码实践
YOLO深度学习计算机视觉
深入探究YOLO系列的骨干网路YOLO系列是目标检测领域中非常知名的算法。其通过将整个图像作为输入,并且直接在图像上通过一个单独的神经网络输出每个检测框的类别预测和边界框信息。为了更好地理解YOLO系列,我们需要先了解它所使用的骨干网路。骨干网络是深度学习模型中的核心部分,负责提取图像的特征。如今常用的骨干网络有VGG、ResNet和MobileNet等。YOLO系列算法采用的是Darknet骨干
- 《Hello YOLOv8从入门到精通》4, 模型架构和骨干网络Backbone调优实践
Jagua
YOLO
YOLOv8是由Ultralytics开发的最先进的目标检测模型,其模型架构细节包括骨干网络(Backbone)、颈部网络(Neck)和头部网络(Head)三大部分。一、骨干网络(Backbone)Backbone部分负责特征提取,采用了一系列卷积和反卷积层,同时使用了残差连接和瓶颈结构来减小网络的大小并提高性能。YOLOv8的Backbone参考了CSPDarkNet结构,的增强版本,并结合了其
- Bottleneck、CSP、DP结构详细介绍
CV工程师小朱
深度学习笔记人工智能深度学习CSP深度可分离残差网络
文章目录前言一、BottleneckDarknetBottleneck二、CSPCSP思想pp-picodet中的CSPLayerDP卷积前言本篇文章详细介绍了三种神经网络中常见的结构,bottleneck、CSP、DP,并附上了代码加深理解。一、BottleneckBottleneck出现在ResNet50/101/152这种深层网络中,基本思想就是先用1x1减少通道数再进行卷积最后再通过1x1
- 【AI】YOLOv7部署在NVIDIA Jetson Nano上
郭老二
AI人工智能YOLO
1、环境搭建参考博客:【AI】JetsonNano烧写SD卡镜像【AI】YOLOv7部署在NVIDIAJetsonTX2上2、下载编译2.1源码下载https://github.com/AlexeyAB/darknet2.2编译1)修改MakefileGPU=1CUDNN=1CUDNN_HALF=0
- YOLOv10改进之MHAF(多分支辅助特征金字塔)
清风AI
深度学习算法详解及代码复现人工智能计算机视觉深度学习算法机器学习
YOLOv10架构YOLOv10的架构主要由主干网络、特征金字塔和预测头三部分组成。主干网络采用改进的Darknet结构,增强特征提取能力。特征金字塔模块使用多尺度特征融合技术,提高对不同大小目标的检测效果。预测头则负责生成最终的检测结果。这种结构设计使得YOLOv10在保持高效率的同时,能够有效处理各种尺度的目标,为后续的改进奠定了基础。检测性能在探讨YOLOv10的性能提升之前,我们需要了解其
- python写接口调用模型_对YOLOv3模型调用时候的python接口详解
weixin_39835607
python写接口调用模型
需要注意的是:更改完源程序.c文件,需要对整个项目重新编译、makeinstall,对已经生成的文件进行更新,类似于之前VS中在一个类中增加新函数重新编译封装dll,而python接口的调用主要使用的是libdarknet.so文件,其余在配置文件中的修改不必重新进行编译安装。之前训练好的模型,在模型调用的时候,总是在lib=CDLL("/home/*****/*******/darknet/li
- 简述Caffe、TensorFlow、TensorFlow Lite、ONNX、DarkNet、PyTorch 等模型
科学的发展-只不过是读大自然写的代码
断纱检测caffetensorflowpytorch
以下是对Caffe、TensorFlow、TensorFlowLite、ONNX、DarkNet和PyTorch等模型的简述:Caffe:Caffe(ConvolutionArchitectureForFeatureExtraction)是一个用于特征抽取的卷积框架,它是一个清晰、可读性高且快速的深度学习框架。Caffe由加州伯克利大学的贾扬清开发,起初是一个用于深度卷积网络的Python框架(无
- 多版本cuda+多版本cudnn+gcc+cmake+opencv+darknet爬坑记录
LMM_AI
系统学习深度学习
本次针对darknet框架部署—centos7.x一、CUDA多版本安装1、很早前安装了很多cuda现在忘了步骤了,这里不再安装,下次再补上,可以看其他贴安装,记清楚自己的安装目录,一般默认在/usr/local/cuda(cuda10.0、cuda10.2),用哪个切换环境变量就行,很方便二、CUDNN版本安装1、下载cudnn并解压,官网上下载与CUDA相匹配的版本,下载难点需要注册个帐号,有
- ROS下使用usb_cam驱动读取摄像头数据
小杨~~~~
ubuntu
因为darknet_ros会直接订阅指定的图像话题名,然后对图像进行检测,绘制检测框,并发布相应的检测话题,因此首先需要找一个能够发布图像话题的ROS包,这里经推荐使用ROS官方提供的usb_cam驱动包,可以直接将小车摄像头采集的图像发布为ROS图像话题。1、下载摄像头驱动包usb_cam#方式一:直接终端输入,通过apt便捷安装cdtest/src/sudoapt-getinstallros-
- 目标检测-YOLOv4
wydxry
深度学习目标检测YOLO目标跟踪
YOLOv4介绍YOLOv4是YOLO系列的第四个版本,继承了YOLOv3的高效性,并通过大量优化和改进,在目标检测任务中实现了更高的精度和速度。相比YOLOv3,YOLOv4在框架设计、特征提取、训练策略等方面进行了全面升级。它在保持实时检测的同时,显著提升了检测性能,尤其在复杂场景中的表现尤为出色。相比YOLOv3的改进与优势改进的Backbone(CSPDarknet-53)YOLOv4使用
- 基于yolov8的绝缘子缺陷检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习YOLO
【算法介绍】基于YOLOv8的绝缘子缺陷检测系统是一种利用先进深度学习技术的高效解决方案,旨在提升电力行业中输电线路的维护和监控水平。YOLOv8作为YOLO系列算法的最新版本,具备更高的检测速度和精度,特别适用于实时物体检测任务。该系统通过深入分析并标注绝缘子数据集,训练YOLOv8模型以精确识别输电线上的绝缘子及其缺陷状态。利用多尺度检测、FPN结构以及CSPDarknet网络等技术,YOLO
- YOLO系列目标检测数据集大全_yolo数据集(1)
2401_84187537
程序员YOLO目标检测人工智能
Darknet版YOLOv4猫狗识别训练好的权重文件:https://download.csdn.net/download/zhiqingAI/85541214Darknet版YOLOv3猫狗识别训练好的权重文件:https://download.csdn.net/download/zhiqingAI/85541209DeepSORT-YOLOv5猫狗检测和跟踪+可视化目标运动轨迹yolov7猫狗
- 在C++上如何使用OpenCV头文件是什么_用OpenCV的dnn模块调用yolov3模型
weixin_39785858
前言在实际应用场景,我们用darknet的GPU版本训练自己的数据,得到权值文件,然后我们可以调用训练的好的模型去实现自己的检测项目。一般情况下,我们可以使用opencv的dnn模块去调用yolov3。下面大致讲解一下如何是实现调用。一、环境准备1、编译好darknet的GPU版本。可参考我的文章https://zhuanlan.zhihu.com/p/1343471762、安装好opencv3.
- C++ OpenCV-dnn模块调用模型进行目标检测 (支持CUDA加速)
枸杞叶儿
经验笔记深度学习神经网络
前言OpenCV4.4开始支持YOLOv4模型的调用,需要使用Opencv的DNN模块。编译安装OpenCV和OpenCV-contrib库步骤,点此链接C++OpenCV调用YOLO模型的完整代码点此下载一、模型加载constexprconstchar*darknet_cfg="../face/yolov3-tiny.cfg";//网络文件constexprconstchar*darknet_w
- YOLOv8 : 网络结构
赛先生.AI
YOLOv8YOLO计算机视觉目标检测
一.YOLOv8网络结构1.BackboneYOLOv8的Backbone同样参考了CSPDarkNet-53网络,我们可以称之为CSPDarkNet结构吧,与YOLOv5不同的是,YOLOv8使用C2f(CSPLayer_2Conv)代替了C3模块(如果你比较熟悉YOLOv5的网络结构,那YOLOv8的网络结构理解起来就easy了)。如图1所示为YOLOv8网络结构图(引用自MMYOLO),对比
- Ubuntu22.04安装cuda,cudnn, 编译darknet
化石草
ubuntu深度学习yolov3
一,安装cuda:1,下载及安装cuda官网:https://developer.nvidia.com/cuda-toolkit-archivewgethttps://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.runsudoshcuda_11.8.0_
- Darknet yolov3 Makefile文件解析
未完城
ubuntudeep-learningdarknetlinuxmakefile
文章目录1.darknetMakefile注释2.reference现在搞深度学习都在linux平台,经常遇到gcc手动编译的时候。由于linux平台没有通用的IDE,大家都是靠Makefile配置文件进行make。在学习darknet框架的过程中,决定要顺便搞清楚Makefile的写法和参数配置。Makefile完整的教程网上有很多,我暂时也不打算完整学一遍,仅仅把遇到的都搞懂,下次遇到新的东西
- [图像算法]-(yolov5.train)-GPU架构中的半精度fp16与单精度fp32计算
蒸饺与白茶
GPU架构中的半精度与单精度计算 由于项目原因,我们需要对darknet中卷积层进行优化,然而对于像caffe或者darknet这类深度学习框架来说,都已经将卷积运算转换成了矩阵乘法,从而可以方便调用cublas库函数和cudnn里tiling过的矩阵乘。 CUDA在推出7.5的时候提出了可以计算16位浮点数据的新特性。定义了两种新的数据类型half和half2.之前有师弟已经DEMO过半精度
- ztree设置禁用节点
3213213333332132
JavaScriptztreejsonsetDisabledNodeAjax
ztree设置禁用节点的时候注意,当使用ajax后台请求数据,必须要设置为同步获取数据,否者会获取不到节点对象,导致设置禁用没有效果。
$(function(){
showTree();
setDisabledNode();
});
- JVM patch by Taobao
bookjovi
javaHotSpot
在网上无意中看到淘宝提交的hotspot patch,共四个,有意思,记录一下。
7050685:jsdbproc64.sh has a typo in the package name
7058036:FieldsAllocationStyle=2 does not work in 32-bit VM
7060619:C1 should respect inline and
- 将session存储到数据库中
dcj3sjt126com
sqlPHPsession
CREATE TABLE sessions (
id CHAR(32) NOT NULL,
data TEXT,
last_accessed TIMESTAMP NOT NULL,
PRIMARY KEY (id)
);
<?php
/**
* Created by PhpStorm.
* User: michaeldu
* Date
- Vector
171815164
vector
public Vector<CartProduct> delCart(Vector<CartProduct> cart, String id) {
for (int i = 0; i < cart.size(); i++) {
if (cart.get(i).getId().equals(id)) {
cart.remove(i);
- 各连接池配置参数比较
g21121
连接池
排版真心费劲,大家凑合看下吧,见谅~
Druid
DBCP
C3P0
Proxool
数据库用户名称 Username Username User
数据库密码 Password Password Password
驱动名
- [简单]mybatis insert语句添加动态字段
53873039oycg
mybatis
mysql数据库,id自增,配置如下:
<insert id="saveTestTb" useGeneratedKeys="true" keyProperty="id"
parameterType=&
- struts2拦截器配置
云端月影
struts2拦截器
struts2拦截器interceptor的三种配置方法
方法1. 普通配置法
<struts>
<package name="struts2" extends="struts-default">
&
- IE中页面不居中,火狐谷歌等正常
aijuans
IE中页面不居中
问题是首页在火狐、谷歌、所有IE中正常显示,列表页的页面在火狐谷歌中正常,在IE6、7、8中都不中,觉得可能那个地方设置的让IE系列都不认识,仔细查看后发现,列表页中没写HTML模板部分没有添加DTD定义,就是<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3
- String,int,Integer,char 几个类型常见转换
antonyup_2006
htmlsql.net
如何将字串 String 转换成整数 int?
int i = Integer.valueOf(my_str).intValue();
int i=Integer.parseInt(str);
如何将字串 String 转换成Integer ?
Integer integer=Integer.valueOf(str);
如何将整数 int 转换成字串 String ?
1.
- PL/SQL的游标类型
百合不是茶
显示游标(静态游标)隐式游标游标的更新和删除%rowtyperef游标(动态游标)
游标是oracle中的一个结果集,用于存放查询的结果;
PL/SQL中游标的声明;
1,声明游标
2,打开游标(默认是关闭的);
3,提取数据
4,关闭游标
注意的要点:游标必须声明在declare中,使用open打开游标,fetch取游标中的数据,close关闭游标
隐式游标:主要是对DML数据的操作隐
- JUnit4中@AfterClass @BeforeClass @after @before的区别对比
bijian1013
JUnit4单元测试
一.基础知识
JUnit4使用Java5中的注解(annotation),以下是JUnit4常用的几个annotation: @Before:初始化方法 对于每一个测试方法都要执行一次(注意与BeforeClass区别,后者是对于所有方法执行一次)@After:释放资源 对于每一个测试方法都要执行一次(注意与AfterClass区别,后者是对于所有方法执行一次
- 精通Oracle10编程SQL(12)开发包
bijian1013
oracle数据库plsql
/*
*开发包
*包用于逻辑组合相关的PL/SQL类型(例如TABLE类型和RECORD类型)、PL/SQL项(例如游标和游标变量)和PL/SQL子程序(例如过程和函数)
*/
--包用于逻辑组合相关的PL/SQL类型、项和子程序,它由包规范和包体两部分组成
--建立包规范:包规范实际是包与应用程序之间的接口,它用于定义包的公用组件,包括常量、变量、游标、过程和函数等
--在包规
- 【EhCache二】ehcache.xml配置详解
bit1129
ehcache.xml
在ehcache官网上找了多次,终于找到ehcache.xml配置元素和属性的含义说明文档了,这个文档包含在ehcache.xml的注释中!
ehcache.xml : http://ehcache.org/ehcache.xml
ehcache.xsd : http://ehcache.org/ehcache.xsd
ehcache配置文件的根元素是ehcahe
ehcac
- java.lang.ClassNotFoundException: org.springframework.web.context.ContextLoaderL
白糖_
javaeclipsespringtomcatWeb
今天学习spring+cxf的时候遇到一个问题:在web.xml中配置了spring的上下文监听器:
<listener>
<listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
</listener>
随后启动
- angular.element
boyitech
AngularJSAngularJS APIangular.element
angular.element
描述: 包裹着一部分DOM element或者是HTML字符串,把它作为一个jQuery元素来处理。(类似于jQuery的选择器啦) 如果jQuery被引入了,则angular.element就可以看作是jQuery选择器,选择的对象可以使用jQuery的函数;如果jQuery不可用,angular.e
- java-给定两个已排序序列,找出共同的元素。
bylijinnan
java
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class CommonItemInTwoSortedArray {
/**
* 题目:给定两个已排序序列,找出共同的元素。
* 1.定义两个指针分别指向序列的开始。
* 如果指向的两个元素
- sftp 异常,有遇到的吗?求解
Chen.H
javajcraftauthjschjschexception
com.jcraft.jsch.JSchException: Auth cancel
at com.jcraft.jsch.Session.connect(Session.java:460)
at com.jcraft.jsch.Session.connect(Session.java:154)
at cn.vivame.util.ftp.SftpServerAccess.connec
- [生物智能与人工智能]神经元中的电化学结构代表什么?
comsci
人工智能
我这里做一个大胆的猜想,生物神经网络中的神经元中包含着一些化学和类似电路的结构,这些结构通常用来扮演类似我们在拓扑分析系统中的节点嵌入方程一样,使得我们的神经网络产生智能判断的能力,而这些嵌入到节点中的方程同时也扮演着"经验"的角色....
我们可以尝试一下...在某些神经
- 通过LAC和CID获取经纬度信息
dai_lm
laccid
方法1:
用浏览器打开http://www.minigps.net/cellsearch.html,然后输入lac和cid信息(mcc和mnc可以填0),如果数据正确就可以获得相应的经纬度
方法2:
发送HTTP请求到http://www.open-electronics.org/celltrack/cell.php?hex=0&lac=<lac>&cid=&
- JAVA的困难分析
datamachine
java
前段时间转了一篇SQL的文章(http://datamachine.iteye.com/blog/1971896),文章不复杂,但思想深刻,就顺便思考了一下java的不足,当砖头丢出来,希望引点和田玉。
-----------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第二课
dcj3sjt126com
englishword
money 钱
paper 纸
speak 讲,说
tell 告诉
remember 记得,想起
knock 敲,击,打
question 问题
number 数字,号码
learn 学会,学习
street 街道
carry 搬运,携带
send 发送,邮寄,发射
must 必须
light 灯,光线,轻的
front
- linux下面没有tree命令
dcj3sjt126com
linux
centos p安装
yum -y install tree
mac os安装
brew install tree
首先来看tree的用法
tree 中文解释:tree
功能说明:以树状图列出目录的内容。
语 法:tree [-aACdDfFgilnNpqstux][-I <范本样式>][-P <范本样式
- Map迭代方式,Map迭代,Map循环
蕃薯耀
Map循环Map迭代Map迭代方式
Map迭代方式,Map迭代,Map循环
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年
- Spring Cache注解+Redis
hanqunfeng
spring
Spring3.1 Cache注解
依赖jar包:
<!-- redis -->
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-redis</artifactId>
- Guava中针对集合的 filter和过滤功能
jackyrong
filter
在guava库中,自带了过滤器(filter)的功能,可以用来对collection 进行过滤,先看例子:
@Test
public void whenFilterWithIterables_thenFiltered() {
List<String> names = Lists.newArrayList("John"
- 学习编程那点事
lampcy
编程androidPHPhtml5
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- 架构师之流处理---------bytebuffer的mark,limit和flip
nannan408
ByteBuffer
1.前言。
如题,limit其实就是可以读取的字节长度的意思,flip是清空的意思,mark是标记的意思 。
2.例子.
例子代码:
String str = "helloWorld";
ByteBuffer buff = ByteBuffer.wrap(str.getBytes());
Sy
- org.apache.el.parser.ParseException: Encountered " ":" ": "" at line 1, column 1
Everyday都不同
$转义el表达式
最近在做Highcharts的过程中,在写js时,出现了以下异常:
严重: Servlet.service() for servlet jsp threw exception
org.apache.el.parser.ParseException: Encountered " ":" ": "" at line 1,
- 用Java实现发送邮件到163
tntxia
java实现
/*
在java版经常看到有人问如何用javamail发送邮件?如何接收邮件?如何访问多个文件夹等。问题零散,而历史的回复早已经淹没在问题的海洋之中。
本人之前所做过一个java项目,其中包含有WebMail功能,当初为用java实现而对javamail摸索了一段时间,总算有点收获。看到论坛中的经常有此方面的问题,因此把我的一些经验帖出来,希望对大家有些帮助。
此篇仅介绍用
- 探索实体类存在的真正意义
java小叶檀
POJO
一. 实体类简述
实体类其实就是俗称的POJO,这种类一般不实现特殊框架下的接口,在程序中仅作为数据容器用来持久化存储数据用的
POJO(Plain Old Java Objects)简单的Java对象
它的一般格式就是
public class A{
private String id;
public Str