#include
using namespace std;
const int mod = 998244353, inv2 = mod + 1 >> 1;
namespace Quadratic_residue {
struct Complex {
int r, i;
Complex(int _r = 0, int _i = 0) : r(_r), i(_i) {
}
};
int I2;
Complex operator * (const Complex &a, Complex &b) {
return Complex((1ll * a.r * b.r % mod + 1ll * a.i * b.i % mod * I2 % mod) % mod, (1ll * a.r * b.i % mod + 1ll * a.i * b.r % mod) % mod);
}
Complex quick_pow(Complex a, int n) {
Complex ans = Complex(1, 0);
while (n) {
if (n & 1) {
ans = ans * a;
}
a = a * a;
n >>= 1;
}
return ans;
}
int get_residue(int n) {
mt19937 e(233);
if (n == 0) {
return 0;
}
if(quick_pow(n, (mod - 1) >> 1).r == mod - 1) {
return -1;
}
uniform_int_distribution<int> r(0, mod - 1);
int a = r(e);
while(quick_pow((1ll * a * a % mod - n + mod) % mod, (mod - 1) >> 1).r == 1) {
a = r(e);
}
I2 = (1ll * a * a % mod - n + mod) % mod;
int x = quick_pow(Complex(a, 1), (mod + 1) >> 1).r, y = mod - x;
if(x > y) swap(x, y);
return x;
}
}
const int N = 1e6 + 10;
int r[N], inv[N], a[N], b[N], c[N], d[N], e[N], t[N], n;
int quick_pow(int a, int n) {
int ans = 1;
while (n) {
if (n & 1) {
ans = 1ll * a * ans % mod;
}
a = 1ll * a * a % mod;
n >>= 1;
}
return ans;
}
void get_r(int lim) {
for (int i = 0; i < lim; i++) {
r[i] = (i & 1) * (lim >> 1) + (r[i >> 1] >> 1);
}
}
void get_inv(int n) {
inv[1] = 1;
for (int i = 2; i <= n; i++) {
inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
}
}
void NTT(int *f, int lim, int rev) {
for (int i = 0; i < lim; i++) {
if (i < r[i]) {
swap(f[i], f[r[i]]);
}
}
for (int mid = 1; mid < lim; mid <<= 1) {
int wn = quick_pow(3, (mod - 1) / (mid << 1));
for (int len = mid << 1, cur = 0; cur < lim; cur += len) {
int w = 1;
for (int k = 0; k < mid; k++, w = 1ll * w * wn % mod) {
int x = f[cur + k], y = 1ll * w * f[cur + mid + k] % mod;
f[cur + k] = (x + y) % mod, f[cur + mid + k] = (x - y + mod) % mod;
}
}
}
if (rev == -1) {
int inv = quick_pow(lim, mod - 2);
reverse(f + 1, f + lim);
for (int i = 0; i < lim; i++) {
f[i] = 1ll * f[i] * inv % mod;
}
}
}
void polyinv(int *f, int *g, int n) {
if (n == 1) {
g[0] = quick_pow(f[0], mod - 2);
return ;
}
polyinv(f, g, n + 1 >> 1);
for (int i = 0; i < n; i++) {
t[i] = f[i];
}
int lim = 1;
while (lim < 2 * n) {
lim <<= 1;
}
get_r(lim);
NTT(t, lim, 1);
NTT(g, lim, 1);
for (int i = 0; i < lim; i++) {
int cur = (2 - 1ll * g[i] * t[i] % mod + mod) % mod;
g[i] = 1ll * g[i] * cur % mod;
t[i] = 0;
}
NTT(g, lim, -1);
for (int i = n; i < lim; i++) {
g[i] = 0;
}
}
void polysqrt(int *f, int *g, int n) {
if (n == 1) {
g[0] = Quadratic_residue::get_residue(f[0]);
return ;
}
polysqrt(f, g, n + 1 >> 1);
polyinv(g, b, n);
int lim = 1;
while (lim < 2 * n) {
lim <<= 1;
}
get_r(lim);
for (int i = 0; i < n; i++) {
t[i] = f[i];
}
NTT(g, lim, 1);
NTT(b, lim, 1);
NTT(t, lim, 1);
for (int i = 0; i < lim; i++) {
g[i] = (1ll * inv2 * g[i] % mod + 1ll * inv2 * b[i] % mod * t[i] % mod) % mod;
b[i] = t[i] = 0;
}
NTT(g, lim, -1);
for (int i = n; i < lim; i++) {
g[i] = 0;
}
}
void derivative(int *a, int *b, int n) {
for (int i = 0; i < n; i++) {
b[i] = 1ll * a[i + 1] * (i + 1) % mod;
}
}
void integrate(int *a, int n) {
for (int i = n - 1; i >= 1; i--) {
a[i] = 1ll * a[i - 1] * inv[i] % mod;
}
a[0] = 0;
}
void polyln(int *f, int *g, int n) {
polyinv(f, b, n);
derivative(f, g, n);
int lim = 1;
while (lim < 2 * n) {
lim <<= 1;
}
get_r(lim);
NTT(g, lim, 1);
NTT(b, lim, 1);
for (int i = 0; i < lim; i++) {
g[i] = 1ll * g[i] * b[i] % mod;
b[i] = 0;
}
NTT(g, lim, -1);
for (int i = n; i < lim; i++) {
g[i] = 0;
}
integrate(g, n);
}
void polyexp(int *f, int *g, int n) {
if (n == 1) {
g[0] = 1;
return ;
}
polyexp(f, g, n + 1 >> 1);
int lim = 1;
while (lim < 2 * n) {
lim <<= 1;
}
polyln(g, d, n);
for (int i = 0; i < n; i++) {
t[i] = (f[i] - d[i] + mod) % mod;
}
t[0] = (t[0] + 1) % mod;
get_r(lim);
NTT(g, lim, 1);
NTT(t, lim, 1);
for (int i = 0; i < lim; i++) {
g[i] = 1ll * g[i] * t[i] % mod;
t[i] = d[i] = 0;
}
NTT(g, lim, -1);
for (int i = n; i < lim; i++) {
g[i] = 0;
}
}
int main() {
return 0;
}