pandas基本数据操作

pandas基本数据操作


为了更好的理解这些基本操作,我们将读取一个真实的股票数据。关于文件操作,后面在介绍,这里只先用一下API

# 读取文件
data = pd.read_csv("./data/stock_day.csv")

# 删除一些列,让数据更简单些,再去做后面的操作
data = data.drop(["ma5","ma10","ma20","v_ma5","v_ma10","v_ma20"], axis=1)

 

pandas基本数据操作_第1张图片

pandas基本数据操作_第2张图片

1 索引操作

Numpy当中我们已经知道使用索引选取序列和切片选择,pandas也支持类似的操作,也可以直接使用列名、行名称,甚至组合使用。

1.1 直接使用行列索引(先列后行)

获取'2018-02-27'这天的'close'的结果

# 直接使用行列索引名字的方式(先列后行)
data['open']['2018-02-27']
23.53

# 不支持的操作
# 错误
data['2018-02-27']['open']
# 错误
data[:1, :2]

pandas基本数据操作_第3张图片

1.2 结合loc或者iloc使用索引

获取从'2018-02-27':'2018-02-22','open'的结果

# 使用loc:只能指定行列索引的名字
data.loc['2018-02-27':'2018-02-22', 'open']

2018-02-27    23.53
2018-02-26    22.80
2018-02-23    22.88
Name: open, dtype: float64

# 使用iloc可以通过索引的下标去获取
# 获取前3天数据,前5列的结果
data.iloc[:3, :5]

            open    high    close    low
2018-02-27    23.53    25.88    24.16    23.53
2018-02-26    22.80    23.78    23.53    22.80
2018-02-23    22.88    23.37    22.82    22.71

pandas基本数据操作_第4张图片

pandas基本数据操作_第5张图片

pandas基本数据操作_第6张图片

pandas基本数据操作_第7张图片

1.3 使用组合索引

获取行第1天到第4天,['open', 'close', 'high', 'low']这个四个指标的结果

# 使用loc和iloc来获取的方式
data.loc[data.index[0:4], ['open', 'close', 'high', 'low']]
data.iloc[0:4, data.columns.get_indexer(['open', 'close', 'high', 'low'])]

            open    close    high    low
2018-02-27    23.53    24.16    25.88    23.53
2018-02-26    22.80    23.53    23.78    22.80
2018-02-23    22.88    22.82    23.37    22.71
2018-02-22    22.25    22.28    22.76    22.02

pandas基本数据操作_第8张图片

2 赋值操作

对DataFrame当中的close列进行重新赋值为1

# 直接修改原来的值
data['close'] = 1
# 或者
data.close = 1

pandas基本数据操作_第9张图片

pandas基本数据操作_第10张图片

3 排序

排序有两种形式,一种对于索引进行排序,一种对于内容进行排序

3.1 DataFrame排序

  • 使用df.sort_values(by=, ascending=)
    • 单个键或者多个键进行排序,
    • 参数:
      • by:指定排序参考的键
      • ascending:默认升序
        • ascending=False:降序
        • ascending=True:升序
# 按照开盘价大小进行排序 , 使用ascending指定按照大小排序
data.sort_values(by="open", ascending=True).head()

pandas基本数据操作_第11张图片

# 按照多个键进行排序
data.sort_values(by=['open', 'high'])

pandas基本数据操作_第12张图片

  • 使用df.sort_index给索引进行排序

这个股票的日期索引原来是从大到小,现在重新排序,从小到大

# 对索引进行排序
data.sort_index()

pandas基本数据操作_第13张图片

3.2 Series排序

  • 使用series.sort_values(ascending=True)进行排序

series排序时,只有一列,不需要参数

data['p_change'].sort_values(ascending=True).head()

2015-09-01   -10.03
2015-09-14   -10.02
2016-01-11   -10.02
2015-07-15   -10.02
2015-08-26   -10.01
Name: p_change, dtype: float64
  • pandas基本数据操作_第14张图片
  • pandas基本数据操作_第15张图片
  • 使用series.sort_index()进行排序

与df一致

# 对索引进行排序
data['p_change'].sort_index().head()

2015-03-02    2.62
2015-03-03    1.44
2015-03-04    1.57
2015-03-05    2.02
2015-03-06    8.51
Name: p_change, dtype: float64

pandas基本数据操作_第16张图片

4 总结

  • 1.索引
    • 直接索引 -- 先列后行,是需要通过索引的字符串进行获取
    • loc -- 先行后列,是需要通过索引的字符串进行获取
    • iloc -- 先行后列,是通过下标进行索引
    • ix -- 先行后列, 可以用上面两种方法混合进行索引  【现在已经不能使用】
  • 2.赋值
    • data[""] = **
    • data. =
  • 3.排序
    • dataframe
      • 对象.sort_values()
      • 对象.sort_index()
    • series
      • 对象.sort_values()
      • 对象.sort_index()

你可能感兴趣的:(机器学习,pandas,机器学习)