ACM-ICPC 2018 南京赛区网络预赛 J.sum

题目:将 n n n分解为 a ∗ b a*b ab的形式,且 a a a b b b均为无平方因子, f ( n ) f(n) f(n)可分解的总方式。例如: 6 = 1 ∗ 6 = 6 ∗ 1 = 2 ∗ 3 = 3 ∗ 2 6=1*6=6*1=2*3=3*2 6=16=61=23=32,因此 f ( 6 ) = 4 f(6)=4 f(6)=4
∑ i = 1 n f ( i ) \sum_{i=1}^nf(i) i=1nf(i)

分析:唯一分解定理欧拉筛

n = i ∗ p [ j ] n=i*p[j] n=ip[j]
如果 i i i% ( p [ j ] ) 2 = 0 (p[j])^2=0 (p[j])2=0,则 i = k ∗ ( p [ j ] ) 2 i=k*(p[j])^2 i=k(p[j])2,则 n = k ∗ ( p [ j ] ) 3 n=k*(p[j])^3 n=k(p[j])3,所以 f ( n ) = 0 f(n)=0 f(n)=0
如果 i i i% ( p [ j ] ) = 0 (p[j])=0 (p[j])=0,则 i = k ∗ ( p [ j ] ) i=k*(p[j]) i=k(p[j]),则 n = k ∗ ( p [ j ] ) 2 n=k*(p[j])^2 n=k(p[j])2,所以 f ( n ) = f ( k ) = f ( i / p [ j ] ) f(n)=f(k)=f(i/p[j]) f(n)=f(k)=f(i/p[j])
如果 i i i% ( p [ j ] ) ! = 0 (p[j])!=0 (p[j])!=0,所以 f ( n ) = f ( i ) ∗ 2 f(n)=f(i)*2 f(n)=f(i)2

#include
#define IOS ios::sync_with_stdio(false);cin.tie(0);

using namespace std;

const int MAXN = 20000005;
int p[MAXN], f[MAXN];

void getf() {
     
	memset(p, 0, sizeof(p));
	f[1] = 1;
	for (int i = 2; i <= MAXN; i++) {
     
		if (!p[i]) {
     
			p[++p[0]] = i;
			f[i] = 2;
		}
		for (int j = 1; j <= p[0] && p[j] <= MAXN / i; j++) {
     
			p[i * p[j]] = 1;
			if (i % (p[j] * p[j]) == 0)
				f[i * p[j]] = 0;
			else if (i % p[j] == 0) {
     
				f[i * p[j]] = f[i / p[j]];
				break;
			}
			else
				f[i * p[j]] = f[i] * 2;
		}
	}
}

int main() {
     
	IOS;
	getf();
	int t;
	cin >> t;
	while (t--) {
     
		int n;
		cin >> n;
		int count = 0;
		for (int i = 1; i <= n; i++)
			count += f[i];
		cout << count << endl;
	}
	return 0;
}

你可能感兴趣的:(数论)