Merge
1 首先建立两个新的DataFrame
import pandas as pd
import numpy as np
df1=pd.DataFrame({'key':['a','b','c','d','e'],'data2':np.arange(5)})
df2=pd.DataFrame({'key':['a','b','c'],'data1':np.arange(3)})
In [238]: df1
Out[238]:
data1 key
0 0 a
1 1 b
2 2 c
3 3 d
4 4 e
In [239]: df2
Out[239]:
data1 key
0 0 a
1 1 b
2 2 c
2 使用merge函数合并
data=pd.merge(df1,df2,on='key',how='left')
示例如下:
In [30]: data=pd.merge(df1,df2,on='key',how='left')
In [31]: data
Out[31]:
data2 key data1
0 0 a 0.0
1 1 b 1.0
2 2 c 2.0
3 3 d NaN
4 4 e NaN
通过indicator表明merge的方式(这个功能日常工作中我比较少用)
In [32]: data=pd.merge(df1,df2,on='key',how='left',indicator=True)
In [33]: data
Out[33]:
data2 key data1 _merge
0 0 a 0.0 both
1 1 b 1.0 both
2 2 c 2.0 both
3 3 d NaN left_only
4 4 e NaN left_only
当两个数据集合并的列名不相同时用 left_on,right_on
df1=df1.rename(columns={'key':'key1'})
data=pd.merge(df1,df2,left_on='key1',right_on='key',how='left')
In [60]: data
Out[60]:
data2 key1 data1 key
0 0 a 0.0 a
1 1 b 1.0 b
2 2 c 2.0 c
3 3 d NaN NaN
4 4 e NaN NaN
data数据集将两个列名不相同的数据合并在一起了!
注:merge函数默认连接方式是inner,另外有left,right,outer等
3 多数据集合并
是针对合并后的数据再合并,不是一次性合并几个数据集
df1=pd.DataFrame({'key':['a','b','c','d','e'],'data1':np.arange(5)})
df2=pd.DataFrame({'key':['a','b','c'],'data2':np.arange(3)})
df3=pd.DataFrame({'key':['a','b','c','d'],'data3':np.arange(4)})
data=pd.merge(pd.merge(df1,df2,on='key',how='left'),df3,on='key',how='left')
In [55]: data
Out[55]:
data1 key data2 data3
0 0 a 0.0 0.0
1 1 b 1.0 1.0
2 2 c 2.0 2.0
3 3 d NaN 3.0
4 4 e NaN NaN
4 多条件合并
df1=pd.DataFrame({'key':['a','b','c','d','e'],'key1':
['one','one','two','one','two'],'data1':np.arange(5)})
df2=pd.DataFrame({'key':['a','b','c'],'key1':
['one','one','two'],'data2':np.arange(3)})
data=pd.merge(df1,df2,on=['key','key1'],how='left')
In [57]: data
Out[57]:
data1 key key1 data2
0 0 a one 0.0
1 1 b one 1.0
2 2 c two 2.0
3 3 d one NaN
4 4 e two NaN
备注:需要注意的是使用merge合并时,两个数据集的合并条件类型须一致。
Concat(类似numpy的concatenate)
合并两个数据集,可在行或者列上合并(axis)
#默认情况下axis=0
data=pd.concat([df1,df2])
data1=pd.concat([df1,df2],axis=1)
In [13]: data=pd.concat([df1,df2])
In [14]: data
Out[14]:
data1 data2 key
0 NaN 0.0 a
1 NaN 1.0 b
2 NaN 2.0 c
3 NaN 3.0 d
4 NaN 4.0 e
0 0.0 NaN a
1 1.0 NaN b
2 2.0 NaN c
ignore_index 不保留原来连接轴上的索引,生成一组新索引
In [74]: data=pd.concat([df1,df2],ignore_index=True)
In [75]: data
Out[75]:
data1 data2 key
0 NaN 0.0 a
1 NaN 1.0 b
2 NaN 2.0 c
3 NaN 3.0 d
4 NaN 4.0 e
5 0.0 NaN a
6 1.0 NaN b
7 2.0 NaN c
#纵向合并(axis=1是列)
In [15]: data1=pd.concat([df1,df2],axis=1)
In [16]: data1
Out[16]:
data2 key data1 key
0 0 a 0.0 a
1 1 b 1.0 b
2 2 c 2.0 c
3 3 d NaN NaN
4 4 e NaN NaN
多个数据集合并时 data1=pd.concat([df1,df2,….])
keys 可以判断数据来自哪个数据集,生成一个多重索引。
In [36]: data=pd.concat([df1,df2],keys=[0,1])
In [37]: data
Out[37]:
data1 data2 key
0 0 NaN 0.0 a
1 NaN 1.0 b
2 NaN 2.0 c
3 NaN 3.0 d
4 NaN 4.0 e
1 0 0.0 NaN a
1 1.0 NaN b
2 2.0 NaN c
Join
索引上的合并,是增加列而不是增加行
df3=pd.DataFrame([[1,2],[3,4],[5,6]],index=['a','b','c'],columns=['ao','bo'])
df4=pd.DataFrame([[7,8],[9,10],[10,12]],index=['e','b','c'],columns=['aoe','boe'])
df3.join(df4,how='outer')
In [38]: df3.join(df4,how='outer')
Out[38]:
ao bo aoe boe
a 1.0 2.0 NaN NaN
b 3.0 4.0 9.0 10.0
c 5.0 6.0 10.0 12.0
e NaN NaN 7.0 8.0
当合并的数据表列名字相同,通过lsuffix=”, rsuffix=” 区分相同列名的列
df5=pd.DataFrame([[7,8],[9,10],[10,12]],index=['e','b','c'],columns=['aoe','boe'])
df6=pd.DataFrame([[7,8],[9,10],[10,12]],index=['e','b','c'],columns=['aoe','boe'])
In [43]: df5.join(df6,how='outer',lsuffix='_l', rsuffix='_r')
Out[43]:
aoe_l boe_l aoe_r boe_r
e 7 8 7 8
b 9 10 9 10
c 10 12 10 12
Combine_first
若df7的数据缺失,则用df8的数据值填充df1的数据值
df7 = pd.DataFrame([[np.nan, 3., 5.], [-4.6, np.nan, np.nan],[np.nan, 7., np.nan]])
df8 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5., 1.6, 4]], index=[1, 2])
In [61]: df7.combine_first(df8)
Out[61]:
0 1 2
0 NaN 3.0 5.0
1 -4.6 NaN -8.2
2 -5.0 7.0 4.0