- 解锁决策树:数据挖掘的智慧引擎
目录一、决策树:数据挖掘的基石二、决策树原理剖析2.1决策树的基本结构2.2决策树的构建流程2.2.1特征选择2.2.2数据集划分2.2.3递归构建三、决策树的实践应用3.1数据准备3.2模型构建与训练3.3模型评估四、决策树的优化策略4.1剪枝策略4.1.1预剪枝4.1.2后剪枝4.2集成学习五、案例分析5.1医疗诊断案例5.2金融风险评估案例六、总结与展望一、决策树:数据挖掘的基石在当今数字化
- 计量经济学(复习/自用/未完)
Jo乔戈里
算法
补充:所谓的估计标准误,指的是回归系数的标准误差。例如回归方程:y=β0+β1X1+β2X2+e我们构建的回归方程的系数的计算得出是基于样本的。这意味着,我们每从总体中进行一次抽样,然后计算回归方程系数,得到的回归系数(β0、β1和β2)都是不同的。如此,我们反复地进行抽样计算得到多个不同的β0、β1和β2,它们都会分别服从一个抽样分布并有一个对应的标准误差。我们就将这个标准误称之为回归系数的标准
- 阿里云大模型AI:开启智能新时代的钥匙
云资源服务商
阿里云人工智能云计算
阿里云大模型AI初印象在当今这个科技迅猛发展的时代,人工智能(AI)无疑已成为最耀眼的明星,深刻地改变着我们生活与工作的方方面面。从智能语音助手到自动驾驶汽车,从医疗影像诊断到金融风险预测,AI技术正以惊人的速度渗透到各个领域,为我们带来前所未有的便利与机遇。在这波澜壮阔的AI发展浪潮中,阿里云大模型AI凭借其卓越的性能、强大的功能以及广泛的应用场景,迅速崛起并占据了举足轻重的地位,吸引着全球无数
- 【AI Study】第四天,Pandas(1)- 基础知识
co-n00b
AIStudy人工智能pandasai
文章概要本文详细介绍Pandas库的基础知识,包括:Pandas的基本概念和特点安装和配置方法核心数据结构(Series和DataFrame)各种数据类型的处理方法实际应用示例什么是PandasPandas是Python中最流行的数据分析库之一,它提供了高性能、易用的数据结构和数据分析工具。Pandas的名字来源于“PanelData”(面板数据),这是一个计量经济学术语,用于描述多维结构化数据集
- 深入剖析 AI 大模型神经网络的原理
Android 小码蜂
AI大模型人工智能神经网络深度学习机器学习自然语言处理
深入剖析AI大模型神经网络的原理本人掘金号,欢迎点击关注:掘金号地址本人公众号,欢迎点击关注:公众号地址一、引言在当今的科技领域,人工智能(AI)大模型正以前所未有的速度改变着我们的生活。从智能语音助手到自动驾驶汽车,从医疗诊断到金融风险评估,这些大模型展现出了强大的能力。而神经网络作为AI大模型的核心组成部分,是实现这些复杂功能的关键技术。神经网络的灵感来源于人类大脑的神经元结构和工作方式。它通
- 7天掌握!MySQL vs 图数据库:混合架构下的复杂关系分析全揭秘
墨瑾轩
数据库学习数据库mysql架构
关注墨瑾轩,带你探索编程的奥秘!超萌技术攻略,轻松晋级编程高手技术宝库已备好,就等你来挖掘订阅墨瑾轩,智趣学习不孤单即刻启航,编程之旅更有趣在当今的数据密集型世界中,处理和理解复杂的关系网络变得越来越重要。从社交网络到推荐系统,从生物信息学到金融风险评估,这些领域都需要一种能够高效处理高度互联数据的技术。传统的关系型数据库如MySQL,在处理这类问题时遇到了瓶颈。而图数据库则以其独特的结构优势脱颖
- python和stata_双剑合璧之Stata与Python:初识IPyStata
weixin_39821035
python和stata
一个是经管实证研究的必备利器,Stata。一个是触手可及的胶水语言,Python。爬虫获取数据,祭出神器Python,整理数据跑出漫天星星,亮出宝剑Stata。双剑合璧,驰骋于数据时代。当时在R语言与应用计量经济学已经提到Stata有一些不足需要弥补。其实在StataConferenceChicago2016上,不仅有人在提及与Web交互绘图的问题,还提及到Reproducibleresearch
- 面向概念漂移的动态自组织映射(SOM)及其在金融风险预警中的效能评估
金融数据分析面临实时处理、高频采集和非结构化特性的多重挑战。传统的使用自组织映射(SOM)进行异常检测存在几个关键性局限:概念漂移现象:随着宏观经济环境变化导致的数据分布转变,模型预测结果往往迅速过时。解释性不足:黑箱模型特性导致风险分析师和合规人员难以准确理解异常标记的原因。以自动编码器为例,它可能会标记出信用风险评分的显著上升,却无法提供哪些具体特征发生了变化,以及变化程度的详细信息。自组织映
- 揭秘:解锁深度神经网络决策的可视化密码
数澜悠客
思考与沉淀dnn人工智能神经网络
引言:AI黑箱与DeepSeek曙光在人工智能飞速发展的当下,深度神经网络(DNNs)已然成为众多领域的核心驱动力量,从图像识别、语音助手到金融风险预测,它无处不在。然而,这一强大技术却被“黑箱”特性所困扰。所谓“黑箱”,即深度神经网络内部复杂的计算过程和决策机制犹如一个密不透风的盒子,人类难以洞察其中奥秘。以图像识别为例,当神经网络准确识别出一张图片中的猫时,我们无法直观了解它究竟是依据猫的轮廓
- 最小距离估计器解读
DuHz
概率论机器学习算法人工智能线性代数信息与通信
最小距离估计器解读引言在统计学和计量经济学中,估计未知参数是一项核心任务。最小距离估计(MinimumDistanceEstimation,MDE)是一类强大的参数估计方法,它通过最小化观测数据与理论模型之间的某种"距离"来估计模型参数。基本概念最小距离估计的核心思想非常直观:我们寻找使得理论分布与实际观测数据之间"距离"最小的参数值。这里的"距离"是一个广义概念,可以是各种统计距离度量。假设我们
- Python机器学习实战:机器学习在金融风险评估中的应用
AI天才研究院
AI大模型应用入门实战与进阶AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python机器学习实战:机器学习在金融风险评估中的应用1.背景介绍金融风险评估是金融行业中至关重要的一环。随着数据量的爆炸性增长和计算能力的提升,机器学习在金融风险评估中的应用变得越来越普遍。通过机器学习算法,我们可以更准确地预测违约风险、市场风险和操作风险,从而帮助金融机构做出更明智的决策。2.核心概念与联系2.1机器学习概述机器学习是一种通过数据训练模型,使其能够自动改进和预测的技术。它主要
- 使用AER包进行R语言Logistic回归模型分析——以affair数据为例
程序员拓荒
r语言回归开发语言R语言
使用AER包进行R语言Logistic回归模型分析——以affair数据为例Logistic回归是一种常用的统计分析方法,用于预测二分类或多分类问题。在本文中,我们将使用R语言中的AER包来进行Logistic回归模型分析,并以affair数据集为例进行实际案例分析。首先,我们需要加载所需的库和数据集。AER包提供了许多用于应用计量经济学的函数和数据集,其中包括affair数据集。以下是加载所需库
- 书籍-《顺序变化检测和假设检验》
深度学习计算机视觉人工智能
书籍:SequentialChangeDetectionandHypothesisTesting作者:AlexanderTartakovsky出版:ChapmanandHall/CRC编辑:陈萍萍的公主@一点人工一点智能下载:书籍下载-《顺序变化检测和假设检验》01书籍介绍顺序变化检测和假设检验的统计方法广泛应用于多个领域,如质量控制、生物医学工程、通信网络、计量经济学、图像处理和安全等。本书提供
- 金融风险概论【2】
星绘搜题
金融风险概论
1.证券承销的信用风险主要表现为,在证券承销完成之后,证券的________不按时向证券公司支付承销费用,给证券公司带来相应的损失。A.管理人B.受托人C.代理人D.发行人2.并购业务是证券公司()的一项重要业务。A.融资业务B.自营业务C.投资银行业务D.经纪业务3.引起证券承销失败的原因包括操作风险、()和信用风险。A.法律风险B.流动性风险C.系统风险D.市场风险4.下列属于证券公司自营业务
- 深度剖析:人工智能算法优化策略与实践
xiayan827
人工智能
目录引言人工智能算法优化的重要性常见的人工智能算法优化策略数据预处理优化模型结构优化算法参数调优优化策略的实践案例案例一:电商推荐系统案例二:智能语音助手总结引言在当今数字化时代,人工智能(AI)已渗透到各个领域,从医疗诊断到金融风险预测,从自动驾驶到智能语音助手。AI技术的核心驱动力便是各种精妙的算法,而算法的性能直接决定了AI应用的效果。为了使AI系统能够高效、准确地处理复杂任务,算法优化显得
- AI浪潮下,欧美合规挑战与破局之路
kaamelai
人工智能
一、AI监管风云:欧美格局初起在科技飞速发展的时代,人工智能(AI)已成为推动各行业变革的核心力量。从智能语音助手到复杂的金融风险预测模型,AI的身影无处不在。然而,随着AI技术的广泛应用,其潜在风险也逐渐显现,如数据隐私泄露、算法偏见、安全漏洞等问题,引起了全球各界的关注。欧美作为AI技术的前沿阵地,率先构建了各自的监管框架,为全球AI治理提供了重要参考。欧盟以其前瞻性的立法理念和严格的监管标准
- 深度学习模型优化与行业应用新突破
智能计算研究中心
其他
内容概要当前深度学习模型优化正经历多维技术革新,核心突破集中在算法效率与场景适配性提升。以自适应学习优化和超参数调优为代表的动态调整机制,显著降低了模型训练对人工经验的依赖。主流框架如MXNet与PyTorch在分布式计算、自动微分等关键能力上形成差异化优势(见表1),而边缘计算与联邦学习的融合,则通过本地化数据处理与隐私保护机制,为医疗影像诊断、金融风险预测等高敏感场景提供了可信部署方案。框架特
- 多市场对冲头寸动态分配模型构建与应用分析
百态老人
区块链
多市场对冲头寸动态分配模型旨在通过跨市场、跨工具的灵活配置,优化风险对冲效率与成本收益比。其核心逻辑在于动态捕捉市场间相关性、流动性差异与监管约束,并结合实时数据迭代调整头寸权重。基于文献与实务案例,模型构建需整合以下关键维度:一、理论基础与市场互动机制动态相关性建模DCC-GARCH模型应用:通过动态条件相关性(DCC)模型捕捉COMEX、LBMA与SGE黄金市场间的时变关联性。例如,上海黄金交
- 基于区块链技术的金融服务的架构设计、关键技术要素的选择、具体应用场景以及未来的发展趋势与挑战
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.简介随着移动支付、银行卡发行等金融服务的普及,传统商业模式面临越来越多的挑战。其中最重要的是保障用户信息安全的需求,防止个人隐私泄露,保障金融数据的完整性,有效应对各种金融风险,从而实现价值的实现。区块链技术作为一种全新的分布式账本技术已经成为解决这些问题的一种途径。它可以记录所有发生的交易,并通过加密算法将数据不可篡改,确保交易信息真实可靠、完整准确,提供可追溯、
- 全国算力网驱动数字基座高效跃迁
智能计算研究中心
其他
内容概要全国算力网作为数字经济的核心基座,正通过"东数西算"工程实现跨区域算力资源的高效配置。该网络以异构计算与边缘计算融合为技术支点,结合智能算力调度与绿色低碳技术,构建覆盖工业互联网、元宇宙、生物计算等多元场景的协同体系。通过芯片架构创新与算法优化,算力可扩展性显著提升,超算中心与云服务平台的资源调度效率优化了30%以上。与此同时,量子计算、神经形态计算等前沿技术突破,为金融风险评估、医疗影像
- 算力网络技术创新驱动生态协同发展
智能计算研究中心
其他
内容概要算力网络作为数字经济发展的核心基础设施,正经历从单一性能提升向体系化技术协同的范式转变。当前技术创新主要聚焦三大维度:在架构层面,通过异构计算、量子计算与神经形态计算的融合,突破传统芯片制程限制;在调度层面,依托分布式计算与流批处理技术,实现跨边缘节点、工业互联网平台与超算中心的资源动态编排;在生态层面,围绕能效管理、安全标准与算法优化构建全链条能力,支撑金融风险评估、基因测序等高复杂度场
- 金融风控可解释性算法安全优化实践
智能计算研究中心
其他
内容概要在金融风险控制领域,算法的可解释性与安全性已成为技术落地的核心挑战。本文从实际业务场景出发,系统性梳理可解释性算法与联邦学习、特征工程的协同框架,通过超参数优化与动态模型评估机制,构建透明化决策链路。在技术实现层面,重点解析支持向量机与随机森林的改进方案,结合数据清洗与标注的标准化流程,强化风险预测模型在准确率、F1值等关键指标的表现,同时兼顾合规性与安全边界的设计要求。提示:金融机构在部
- 伍德里奇计量经济学第四章计算机答案,计量经济学中文答案 伍德里奇
weixin_39950470
第1章计置经济学的性质与经济数据1.1复习笔记一、计量经济学由于计量经济学主要考虑在搜集和分析非实验经济数据时的固有问题,计量经济学己从数理统计分离出来并演化成一门独立学科。1.非实验数据是指并非从对个人、企业或经济系统中的某些部分的控制实验而得来的数据。非实验数据有时被称为观测数据或回顾数据,以强调研宄者只是被动的数据搜集者这一事实。2.实验数据通常是在实验环境中获得的,但在社会科学中要得到这些
- 跨领域算法安全优化与可解释实践
智能计算研究中心
其他
内容概要作为系统性研究框架,《跨领域算法安全优化与可解释实践》从算法研发的全生命周期切入,重点解决多领域交叉应用中的核心矛盾。通过整合联邦学习的分布式架构与量子计算的高效特性,构建兼顾隐私保护与运算效率的算法优化范式,同时引入动态可解释性分析技术,为医疗影像诊断、金融风险预测等高敏感场景提供决策透明度保障。在技术路径层面,研究聚焦特征工程的鲁棒性设计、超参数的自适应调优策略,以及生成对抗网络在数据
- 智能算法安全与跨领域创新实践
智能计算研究中心
其他
内容概要在智能算法快速渗透各行业的背景下,安全治理与技术创新已成为驱动跨领域应用的核心议题。当前研究重点围绕算法可解释性增强、动态风险评估及数据安全防护展开,通过融合联邦学习的分布式协作框架、量子计算的算力突破以及注意力机制的特征聚焦能力,构建起多模态技术融合的创新路径。在应用场景层面,医疗影像诊断、金融风险预测与自动驾驶系统等关键领域已形成算法效能与安全性的双重验证体系,其中超参数优化、特征工程
- 金融合规测试:金融系统稳健运行的“定海神针“
软件测试金融合规测试
一、什么是金融合规测试?金融行业是受监管最严格的领域之一,各国政府和监管机构(如中国人民银行、银保监会、证监会、美国SEC、欧盟ESMA等)都制定了严格的法律法规,要求金融机构确保系统安全、交易透明、公平竞争,并防范金融风险。金融合规测试就是指针对金融系统进行的专项测试,以验证其是否符合各类合规性要求。金融合规测试不仅涉及传统的软件功能测试,还包括数据安全、交易透明度、隐私保护、反洗钱(AML)、
- 【压力测试】
周纠纠
压力测试算法
压力测试一、背景与现状1、引言2.压力测试与不可忽视的α3.制度演变:从公募基金到理财产品4.行业实践仍处于早期阶段5.理财产品压力测试的优化路径二、压力测试介绍1.压力测试的定义2.压力测试的步骤一、背景与现状1、引言20世纪末,随着世界经济一体化趋势的发展及全球金融市场波动的加剧,金融风险管理的重要性日益凸显,金融机构着手构建风险管理体系,各类新型风险管理工具陆续登上历史舞台。1993年,G3
- 金融风控与医疗影像算法创新前沿
智能计算研究中心
其他
内容概要在金融风控与医疗影像交叉领域,算法创新正推动两大行业的技术范式变革。联邦学习算法通过分布式数据协作机制,在保证隐私安全的前提下,显著提升金融风险预测模型的泛化能力。医疗影像诊断领域则依托三维卷积神经网络(3D-CNN)架构,实现了对CT、MRI等多模态影像的精准病灶分割,诊断准确率较传统方法提升23.6%。值得关注的是,可解释性算法(如LIME和SHAP)的深度应用,使两类场景中的模型决策
- 智能算法的全面应用:量子计算与自动化学习在各行业的创新路径探索
智能计算研究中心
其他
内容概要在现代社会,智能算法的应用逐渐渗透到各个行业,成为推动科技进步的重要力量。自动化机器学习算法通过简化模型训练和调优的过程,为数据科学家节省了大量时间。可解释性算法则旨在让模型的决策过程更加透明,从而提高用户对算法决策的信任。此外,量子算法以其独特的计算能力,展现出在处理复杂问题时潜在的优势。金融风控领域通过运用金融风险预测模型,不仅提高了风险管理效率,还提升了预警能力。医疗影像分析则借助卷
- 一文读懂 AI 大模型备案:万字详解全流程要点
chuangfumao
人工智能
一、引言在当今数字化时代,AI大模型以其强大的智能处理能力,广泛应用于各个领域,从智能客服到图像生成,从医疗诊断辅助到金融风险预测,大模型正深刻改变着人们的生活和工作方式。然而,随着其影响力的不断扩大,规范管理成为必然需求。AI大模型备案制度应运而生,这一制度对于保障数据安全、保护用户隐私、维护社会稳定和国家安全具有重要意义。它确保大模型在整个生命周期,从开发、训练到部署和应用,都严格遵循相关法律
- mondb入手
木zi_鸣
mongodb
windows 启动mongodb 编写bat文件,
mongod --dbpath D:\software\MongoDBDATA
mongod --help 查询各种配置
配置在mongob
打开批处理,即可启动,27017原生端口,shell操作监控端口 扩展28017,web端操作端口
启动配置文件配置,
数据更灵活 
- 大型高并发高负载网站的系统架构
bijian1013
高并发负载均衡
扩展Web应用程序
一.概念
简单的来说,如果一个系统可扩展,那么你可以通过扩展来提供系统的性能。这代表着系统能够容纳更高的负载、更大的数据集,并且系统是可维护的。扩展和语言、某项具体的技术都是无关的。扩展可以分为两种:
1.
- DISPLAY变量和xhost(原创)
czmmiao
display
DISPLAY
在Linux/Unix类操作系统上, DISPLAY用来设置将图形显示到何处. 直接登陆图形界面或者登陆命令行界面后使用startx启动图形, DISPLAY环境变量将自动设置为:0:0, 此时可以打开终端, 输出图形程序的名称(比如xclock)来启动程序, 图形将显示在本地窗口上, 在终端上输入printenv查看当前环境变量, 输出结果中有如下内容:DISPLAY=:0.0
- 获取B/S客户端IP
周凡杨
java编程jspWeb浏览器
最近想写个B/S架构的聊天系统,因为以前做过C/S架构的QQ聊天系统,所以对于Socket通信编程只是一个巩固。对于C/S架构的聊天系统,由于存在客户端Java应用,所以直接在代码中获取客户端的IP,应用的方法为:
String ip = InetAddress.getLocalHost().getHostAddress();
然而对于WEB
- 浅谈类和对象
朱辉辉33
编程
类是对一类事物的总称,对象是描述一个物体的特征,类是对象的抽象。简单来说,类是抽象的,不占用内存,对象是具体的,
占用存储空间。
类是由属性和方法构成的,基本格式是public class 类名{
//定义属性
private/public 数据类型 属性名;
//定义方法
publ
- android activity与viewpager+fragment的生命周期问题
肆无忌惮_
viewpager
有一个Activity里面是ViewPager,ViewPager里面放了两个Fragment。
第一次进入这个Activity。开启了服务,并在onResume方法中绑定服务后,对Service进行了一定的初始化,其中调用了Fragment中的一个属性。
super.onResume();
bindService(intent, conn, BIND_AUTO_CREATE);
- base64Encode对图片进行编码
843977358
base64图片encoder
/**
* 对图片进行base64encoder编码
*
* @author mrZhang
* @param path
* @return
*/
public static String encodeImage(String path) {
BASE64Encoder encoder = null;
byte[] b = null;
I
- Request Header简介
aigo
servlet
当一个客户端(通常是浏览器)向Web服务器发送一个请求是,它要发送一个请求的命令行,一般是GET或POST命令,当发送POST命令时,它还必须向服务器发送一个叫“Content-Length”的请求头(Request Header) 用以指明请求数据的长度,除了Content-Length之外,它还可以向服务器发送其它一些Headers,如:
- HttpClient4.3 创建SSL协议的HttpClient对象
alleni123
httpclient爬虫ssl
public class HttpClientUtils
{
public static CloseableHttpClient createSSLClientDefault(CookieStore cookies){
SSLContext sslContext=null;
try
{
sslContext=new SSLContextBuilder().l
- java取反 -右移-左移-无符号右移的探讨
百合不是茶
位运算符 位移
取反:
在二进制中第一位,1表示符数,0表示正数
byte a = -1;
原码:10000001
反码:11111110
补码:11111111
//异或: 00000000
byte b = -2;
原码:10000010
反码:11111101
补码:11111110
//异或: 00000001
- java多线程join的作用与用法
bijian1013
java多线程
对于JAVA的join,JDK 是这样说的:join public final void join (long millis )throws InterruptedException Waits at most millis milliseconds for this thread to die. A timeout of 0 means t
- Java发送http请求(get 与post方法请求)
bijian1013
javaspring
PostRequest.java
package com.bijian.study;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.HttpURL
- 【Struts2二】struts.xml中package下的action配置项默认值
bit1129
struts.xml
在第一部份,定义了struts.xml文件,如下所示:
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache.org/dtds/struts
- 【Kafka十三】Kafka Simple Consumer
bit1129
simple
代码中关于Host和Port是割裂开的,这会导致单机环境下的伪分布式Kafka集群环境下,这个例子没法运行。
实际情况是需要将host和port绑定到一起,
package kafka.examples.lowlevel;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
impo
- nodejs学习api
ronin47
nodejs api
NodeJS基础 什么是NodeJS
JS是脚本语言,脚本语言都需要一个解析器才能运行。对于写在HTML页面里的JS,浏览器充当了解析器的角色。而对于需要独立运行的JS,NodeJS就是一个解析器。
每一种解析器都是一个运行环境,不但允许JS定义各种数据结构,进行各种计算,还允许JS使用运行环境提供的内置对象和方法做一些事情。例如运行在浏览器中的JS的用途是操作DOM,浏览器就提供了docum
- java-64.寻找第N个丑数
bylijinnan
java
public class UglyNumber {
/**
* 64.查找第N个丑数
具体思路可参考 [url] http://zhedahht.blog.163.com/blog/static/2541117420094245366965/[/url]
*
题目:我们把只包含因子
2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14
- 二维数组(矩阵)对角线输出
bylijinnan
二维数组
/**
二维数组 对角线输出 两个方向
例如对于数组:
{ 1, 2, 3, 4 },
{ 5, 6, 7, 8 },
{ 9, 10, 11, 12 },
{ 13, 14, 15, 16 },
slash方向输出:
1
5 2
9 6 3
13 10 7 4
14 11 8
15 12
16
backslash输出:
4
3
- [JWFD开源工作流设计]工作流跳跃模式开发关键点(今日更新)
comsci
工作流
既然是做开源软件的,我们的宗旨就是给大家分享设计和代码,那么现在我就用很简单扼要的语言来透露这个跳跃模式的设计原理
大家如果用过JWFD的ARC-自动运行控制器,或者看过代码,应该知道在ARC算法模块中有一个函数叫做SAN(),这个函数就是ARC的核心控制器,要实现跳跃模式,在SAN函数中一定要对LN链表数据结构进行操作,首先写一段代码,把
- redis常见使用
cuityang
redis常见使用
redis 通常被认为是一个数据结构服务器,主要是因为其有着丰富的数据结构 strings、map、 list、sets、 sorted sets
引入jar包 jedis-2.1.0.jar (本文下方提供下载)
package redistest;
import redis.clients.jedis.Jedis;
public class Listtest
- 配置多个redis
dalan_123
redis
配置多个redis客户端
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi=&quo
- attrib命令
dcj3sjt126com
attr
attrib指令用于修改文件的属性.文件的常见属性有:只读.存档.隐藏和系统.
只读属性是指文件只可以做读的操作.不能对文件进行写的操作.就是文件的写保护.
存档属性是用来标记文件改动的.即在上一次备份后文件有所改动.一些备份软件在备份的时候会只去备份带有存档属性的文件.
- Yii使用公共函数
dcj3sjt126com
yii
在网站项目中,没必要把公用的函数写成一个工具类,有时候面向过程其实更方便。 在入口文件index.php里添加 require_once('protected/function.php'); 即可对其引用,成为公用的函数集合。 function.php如下:
<?php /** * This is the shortcut to D
- linux 系统资源的查看(free、uname、uptime、netstat)
eksliang
netstatlinux unamelinux uptimelinux free
linux 系统资源的查看
转载请出自出处:http://eksliang.iteye.com/blog/2167081
http://eksliang.iteye.com 一、free查看内存的使用情况
语法如下:
free [-b][-k][-m][-g] [-t]
参数含义
-b:直接输入free时,显示的单位是kb我们可以使用b(bytes),m
- JAVA的位操作符
greemranqq
位运算JAVA位移<<>>>
最近几种进制,加上各种位操作符,发现都比较模糊,不能完全掌握,这里就再熟悉熟悉。
1.按位操作符 :
按位操作符是用来操作基本数据类型中的单个bit,即二进制位,会对两个参数执行布尔代数运算,获得结果。
与(&)运算:
1&1 = 1, 1&0 = 0, 0&0 &
- Web前段学习网站
ihuning
Web
Web前段学习网站
菜鸟学习:http://www.w3cschool.cc/
JQuery中文网:http://www.jquerycn.cn/
内存溢出:http://outofmemory.cn/#csdn.blog
http://www.icoolxue.com/
http://www.jikexue
- 强强联合:FluxBB 作者加盟 Flarum
justjavac
r
原文:FluxBB Joins Forces With Flarum作者:Toby Zerner译文:强强联合:FluxBB 作者加盟 Flarum译者:justjavac
FluxBB 是一个快速、轻量级论坛软件,它的开发者是一名德国的 PHP 天才 Franz Liedke。FluxBB 的下一个版本(2.0)将被完全重写,并已经开发了一段时间。FluxBB 看起来非常有前途的,
- java统计在线人数(session存储信息的)
macroli
javaWeb
这篇日志是我写的第三次了 前两次都发布失败!郁闷极了!
由于在web开发中常常用到这一部分所以在此记录一下,呵呵,就到备忘录了!
我对于登录信息时使用session存储的,所以我这里是通过实现HttpSessionAttributeListener这个接口完成的。
1、实现接口类,在web.xml文件中配置监听类,从而可以使该类完成其工作。
public class Ses
- bootstrp carousel初体验 快速构建图片播放
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
img{
border: 1px solid white;
box-shadow: 2px 2px 12px #333;
_width: expression(this.width > 600 ? "600px" : this.width + "px");
_height: expression(this.width &
- SparkSQL读取HBase数据,通过自定义外部数据源
superlxw1234
sparksparksqlsparksql读取hbasesparksql外部数据源
关键字:SparkSQL读取HBase、SparkSQL自定义外部数据源
前面文章介绍了SparSQL通过Hive操作HBase表。
SparkSQL从1.2开始支持自定义外部数据源(External DataSource),这样就可以通过API接口来实现自己的外部数据源。这里基于Spark1.4.0,简单介绍SparkSQL自定义外部数据源,访
- Spring Boot 1.3.0.M1发布
wiselyman
spring boot
Spring Boot 1.3.0.M1于6.12日发布,现在可以从Spring milestone repository下载。这个版本是基于Spring Framework 4.2.0.RC1,并在Spring Boot 1.2之上提供了大量的新特性improvements and new features。主要包含以下:
1.提供一个新的sprin