- 机器学习与深度学习间关系与区别
ℒℴѵℯ心·动ꦿ໊ོ꫞
人工智能学习深度学习python
一、机器学习概述定义机器学习(MachineLearning,ML)是一种通过数据驱动的方法,利用统计学和计算算法来训练模型,使计算机能够从数据中学习并自动进行预测或决策。机器学习通过分析大量数据样本,识别其中的模式和规律,从而对新的数据进行判断。其核心在于通过训练过程,让模型不断优化和提升其预测准确性。主要类型1.监督学习(SupervisedLearning)监督学习是指在训练数据集中包含输入
- 如何做好人生的选择题?百科全书式天才——赫伯特·西蒙给你答案
伽马有话说
赫伯特·西蒙是谁?想必知道的人非常少。但当看到他的履历后,相信没有人再怀疑他是个“天才”。西蒙出生于1916年6月15日,是个美国人,他的名字全称为赫伯特·亚历山大·西蒙,在2001年2月9日与世长辞,在这84年的岁月中,西蒙以27岁时取得的政治学博士学位为开端,先后步入了政治学、管理学、认知心理学、信息科学、人工智能、科学哲学、应用数学、统计学、运筹学、控制论、数理经济学、公共管理等领域,在这些
- 认识世界
陈陈_19b4
9月16日,雨。阅读书目:《真相》。作者:瑞典统计学家和医学教授汉斯·罗斯林,他的儿子奥拉·罗斯林,google公共数据团队的负责人。汉斯·罗斯林还是一位全球知名的教育家,是世界健康组织和联合国儿童基金会的顾问。他与儿子儿媳共同创办了Gapminder基金会,开发了Trendalyzer软件,将国际统计数据转化成交互式的生动有趣的图表,帮助人们以事实为基础来观察世界,被称为“可视化数据之父”。图片
- 如何有效的学习AI大模型?
Python程序员罗宾
学习人工智能语言模型自然语言处理架构
学习AI大模型是一个系统性的过程,涉及到多个学科的知识。以下是一些建议,帮助你更有效地学习AI大模型:基础知识储备:数学基础:学习线性代数、概率论、统计学和微积分等,这些是理解机器学习算法的数学基础。编程技能:掌握至少一种编程语言,如Python,因为大多数AI模型都是用Python实现的。理论学习:机器学习基础:了解监督学习、非监督学习、强化学习等基本概念。深度学习:学习神经网络的基本结构,如卷
- 【Python・统计学】威尔科克森符号秩检验/Wilcoxon signed-rank test(原理及代码)
TUTO_TUTO
统计学pythonpython学习笔记
前言自学笔记,分享给对统计学原理不太清楚但需要在论文中用到的小伙伴,欢迎大佬们补充或绕道。ps:本文不涉及公式讲解(文科生小白友好体质)~(部分定义等来源于知乎百度等)本文重点:威尔科克森符号秩检验(英文名:Wilcoxonsigned-ranktest)【1.简单原理和步骤】【2.应用条件】【3.数据实例以及Python代码】1.简单原理和步骤威尔科克森符号秩检验是一种非参数检验的方法,需要数据
- 【Python・统计学】Kruskal-Wallis检验/H检验(原理及代码)
TUTO_TUTO
python统计学python学习笔记
前言自学笔记,分享给对统计学原理不太清楚但需要在论文中用到的小伙伴,欢迎大佬们补充或绕道。ps:本文不涉及公式讲解(文科生小白友好体质)~(部分定义等来源于知乎百度等)本文重点:Kruskal-Wallis检验(Kruskal-Wallistest),也称H检验【1.定义和简单原理】【2.应用条件】【3.数据实例以及Python代码】【4.多重比较(例:Dunn检验)】1.定义和简单原理Krusk
- 【Python・统计学】单因素方差分析(简单原理及代码)
TUTO_TUTO
统计学pythonpython学习笔记
前言自学笔记,分享给对统计学原理不太清楚但需要在论文中用到的小伙伴,欢迎大佬们补充或绕道。ps:本文不涉及公式讲解(文科生小白友好体质)~本文重点:单因素方差分析(以下:方差分析)【1.方差分析简单原理和前提条件】【2.方差分析和t检验的区别】【3.方差分析代码(配对/独立+事后检验+效应量)】1.方差分析简单原理方差分析(ANOVA)又称“变异数分析”或“F检验”,是由罗纳德·费雪爵士发明的,用
- 【统计学】参数检验和非参数检验的区别和基本统计学
TUTO_TUTO
统计学pythonpython
前言自学笔记,分享给对统计学原理不太清楚但需要在论文中用到的小伙伴,欢迎大佬们补充或绕道。ps:本文不涉及公式讲解(文科生小白友好体质)~本文重点:参数检验和非参数检验的区别以及对应的常用统计学方法(这是需要根据自己的数据类型搞清楚用哪种统计学方法的关键)【1.参数检验】【2.非参数检验】【3.参数检验和非参数检验的区别】【4.常用统计学方法】1.什么是参数和参数检验参数(parameter)的概
- 看《碟中谍6》之前你不得不知道的天花
Mingo布克
8月31日《碟中谍6》再中国上映,鸣哥提前一天买了下午的票,准备看阿汤哥如何全面瓦解。图片发自App在这里就不剧透了,但是要说一个事情,在看电影之前各位不得不知道的事,关于天花。因为电影中,反派在克什米尔地区散步天花,造成了大量妇女和儿童死亡。OK,以下内容和电影再没关系了。2018年高考全国I卷作文题“战机防护”,“统计学家沃德坚持加强对飞机上弹痕少的地方的防护,而不是哪里弹痕多修复哪里,因为弹
- 日记2021-3-8
思考z
今天开课第一天,对于今天的目标完成的还不错早上起床赖了一下,下午去图书馆呆了2个多小时,晚自习看了概率论与统计学,单词:talent天赋,才能,thick厚的,obstacleto对……障碍,introduce介绍,传入,thin瘦的,稀薄的,thorough彻底的,完全的,occurredto想到,invent发明,throat喉咙,ofcourse当然,thunder雷,雷声,tide潮汐,o
- PDF和CDF
薛定谔的猫_大雪
概率论
在概率论和统计学中,PDF和CDF是两种描述随机变量分布的重要函数:ProbabilityDensityFunction(PDF):概率密度函数是用来描述连续随机变量可能取值的概率分布的函数。对于一个连续型随机变量X,其PDFf(x)定义为在某个取值x处的概率密度,即X在该值附近出现的概率密度。PDF的积分可以得到概率,即在某个区间内随机变量出现的概率。CumulativeDensityFunct
- 几何分布的期望和方差公式推导_算法数学基础-统计学最基础之均值、方差、协方差、矩...
weixin_39848097
几何分布的期望和方差公式推导均值定理六个公式概率论方差公式
我们天天都可以接触很多随机现象,比如每天的天气不一样气温是我们最直接的感受,我们很难预测明天的精确问题,但是这些随机现象又体现出了一定的规律性。比如上海7月份平均35度左右,冬天的平均温度在5度左右。所以35、5这些数字体现了某种稳定性。所以除了前面几章中讲到的分布律和概率密度函数可以表征随机变量外,还可以用一组数字来表达随机变量的一般特性。这就是我们今天要讲到的随机变量的数字特征。通过对数字特征
- 数据分析面试【概率论与统计学】总结之-----统计学常见面试题整理
天阑的芋头
#数据分析—统计学知识数据分析统计学数据分析面试
阅读之前看这里:博主是正在学习数据分析的一员,博客记录的是在学习过程中一些总结,也希望和大家一起进步,在记录之时,未免存在很多疏漏和不全,如有问题,还请私聊博主指正。博客地址:天阑之蓝的博客,学习过程中不免有困难和迷茫,希望大家都能在这学习的过程中肯定自己,超越自己,最终创造自己。目录1.用简洁的话语阐述随机变量的含义2.划分连续型随机变量和离散型随机变量的依据3.常见的分布函数/概率密度函数,以
- 每日小计划
小糊涂神
活到老学到老到,学习永无止境,我坚持每天学习,我的学习计划如下:1.每天学习五个英语单词,和正在学习英语的儿子共同进步,方便辅导他。2.学习一节统计学或者一节线性代数课程,在此基础上进一步学习数据的处理软件。3.每天微信步数达到1万步,每天饭后过一下二人世界,不到沟通感情,而且还能强身健体!4.学习两节税务师课件,中级会计师已经通过,距离考高级还有几年,空档期考取税务师,充实自己的专业知识。5.坚
- 最大熵模型(Maximum entropy model)
Fang Suk
机器学习最大熵模型最大熵最大熵原理指数族分布
最大熵模型(Maximumentropymodel)本文你将知道:什么是最大熵原理,最大熵模型最大熵模型的推导(约束最优化问题求解)最大熵模型的含义与优缺点1最大熵原理最大熵原理:在满足已知约束条件的模型集合中,选择熵最大的模型。熵最大,对应着随机性最大。最大熵首先要满足已知事实,对于其他未知的情况,不做任何的假设,认为他们是等可能性的,此时随机性最大。2最大熵模型最大熵原理是统计学习的一般原理,
- 【统计学习方法读书笔记】(四)朴素贝叶斯法
Y.G Bingo
统计学习方法人工智能统计学习概率概率论
终于到了贝叶斯估计这章了,贝叶斯估计在我心中一直是很重要的地位,不过发现书中只用了不到10页介绍这一章,深度内容后,发现贝叶斯估计的基础公式确实不多,但是由于正态分布在生活中的普遍性,贝叶斯估计才应用的非常多吧!默认输入变量用XXX表示,输出变量用YYY表示概率公式描述:P(X=x)P(X=x)P(X=x):表示当X=xX=xX=x时的概率P(X=x∣Y=ck)P(X=x|Y=c_k)P(X=x∣
- 时间序列分析技巧(二):ARIMA模型建模步骤总结
小墨&晓末
时间序列分析算法机器学习人工智能程序人生
CSDN小墨&晓末:https://blog.csdn.net/jd1813346972 个人介绍:研一|统计学|干货分享 擅长Python、Matlab、R等主流编程软件 累计十余项国家级比赛奖项,参与研究经费10w、40w级横向文章目录1目的2ARIMA模型建模流程图解3ARIMA模型建模实操1目的 该篇为针对时间序列ARIMA模型建模系列技巧:ARIMA模型
- 数学基础 -- 线性代数之矩阵的迹
sz66cm
线性代数机器学习决策树
矩阵的迹什么是矩阵的迹?矩阵的迹(TraceofaMatrix)是线性代数中的一个基本概念,定义为一个方阵主对角线上元素的总和。矩阵的迹在许多数学和物理应用中都起着重要作用,例如在矩阵分析、量子力学、统计学和系统理论中。矩阵迹的定义对于一个n×nn\timesnn×n的方阵AAA:A=(a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮an1an2⋯ann)A=\begin{pmatrix}a_{1
- 【统计学习方法】感知机
jyyym
ml苦手机器学习
一、前言感知机是FrankRosenblatt在1957年就职于康奈尔航空实验室时所发明的一种人工神经网络。它可以被视为一种最简单的前馈神经网络,是一种二元线性分类器。Seemoredetailsinwikipdia感知机.本篇blog将从统计学习方法三要素即模型、策略、算法三个方面介绍感知机,并给出相应代码实现。二、模型假设输入空间是x∈Rnx\in{R^n}x∈Rn,输出空间是y∈{−1,+1
- 2024 数学建模国赛 C 题模型及算法(无废话版)
不染53
数学建模数学建模算法python
目录写在开始需要掌握的数学模型/算法评价体系/评价类问题时间序列处理数据降维聚类问题(无监督)分类问题(有监督)集成学习(Bagging/Boosting)回归问题关联分析统计学方法/统计模型智能优化算法需要掌握的Python专业库需要掌握的软件/工具写在开始本人获2023年数学建模国赛C题国家级一等奖,备赛期间专攻C题。本文总结了在备赛期间总结的模型和算法,足以应对90%国赛C题中涉及到的问题。
- 每天一个数据分析题(五百一十四)- 决策树算法
跟着紫枫学姐学CDA
数据分析题库算法数据分析决策树
决策树由节点和边两种元素组成的结构,决策树中不包含一下哪种结点?A.根结点(rootnode)B.内部结点(internalnode)C.外部结点(externalnode)D.叶结点(leafnode)数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练
- 零基础入门生信数据分析——导读
呆猪儿
生信之转录组——上游分析生信之转录组——下游分析学习方法r语言数据分析数据库数据挖掘需求分析大数据
零基础入门生信数据分析——导读生信数据分析,即生物信息学数据分析,是一个涵盖了生物学、计算机科学、数学和统计学等多个领域的交叉学科。它主要利用计算机算法和统计方法对生物学数据进行处理、分析和解释,以揭示生物分子、细胞、组织和生物体等各个层次的生物学规律和机制。本帖主要是为生信数据分析的各个分析点提供跳转链接(简单说就是提供了一个目录供大家选择自己想要的知识点可以直接跳转)关联的生信数据分析的分析点
- 2024国赛数学建模备战-数学建模思想方法大全及方法适用范围
V建模忠哥V
2024国赛数学建模
第一篇:方法适用范围一、统计学方法1.1多元回归1、方法概述:在研究变量之间的相互影响关系模型时候,用到这类方法,具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx可以转化为y=uu=lnx来解决;
- 数学漫步——贝叶斯估计思想
罗泽坤
统计学中有两个大的学派:频率学派(也称经典学派),和贝叶斯学派总所周知统计推断是根据样本信息对总体分布或者是总体特征数进行推断,经典学派和贝叶斯学派就是通过统计推断的不同方式划分的,经典学派的统计推断是依据样本信息和总体信息来进行推断,而贝叶斯学派认为除了依据以上两种信息来进行推断以外还可以应该加上先验信息来进行统计推断。样本信息:样本信息即抽取样本观测其值所得到的信息,譬如在等到一组样本值之后可
- 科研绘图系列:R语言基础图形合集
生信学习者2
R语言可视化其他r语言
基础图形可视化数据分析的图形可视化是了解数据分布、波动和相关性等属性必不可少的手段。不同的图形类型对数据属性的表征各不相同,通常具体问题使用具体的可视化图形。R语言在可视化方面具有极大的优势,因其本身就是统计学家为了研究统计问题开发的编程语言,因此极力推荐使用R语言可视化数据。散点图散点图是由x值和y值确定的点散乱分布在坐标轴上,一是可以用来展示数据的分布和聚合情况,二是可通过分布情况得到x和y之
- 每天一个数据分析题(五百一十二)- 数据标准化
跟着紫枫学姐学CDA
数据分析题库数据分析数据挖掘
在完整的机器学习流程中,数据标准化(DataStandardization)一直是一项重要的处理流程。不同模型对于数据是否标准化的敏感程度不同,以下哪个模型对变量是否标准化不敏感?A.决策树B.KNNC.K-MeansD.SVM数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,S
- 新书推荐 |《广告数据定量分析:如何成为一位厉害的广告优化师》
hzbooks
新书推荐《广告数据定量分析:如何成为一位厉害的广告优化师》长按二维码了解及购买资深广告优化师和数据分析师撰写,宋星、吴俊等近10位专家推荐,快速提升广告优化师数据分析能力,总结SEM、移动广告、信息流广告等各种广告数据分析方法论。名人推荐这本书立足统计学和广告优化的交叉领域,既有科学的数据分析理论作支撑,又和广告优化实践相结合,兼具理论意义和现实价值,可读性较强。在诸如应用商店广告位效果评估、信息
- 机器学习入门:机器学习的基本概念
Louis0687
姓名:高亦凡学号:19020100056学院:电子工程学院转载自:原文链接【嵌牛导读】机器学习(MachineLearning)是一门涉及统计学、系统辨识、逼近理论、神经网络、优化理论、计算机科学、脑科学等诸多领域的交叉学科,研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,是人工智能技术的核心。【嵌牛鼻子】机器学习【嵌牛提问】什么是机器学
- 概率论中的卷积公式
Ctrl+CV九段手
概率论卷积公式卷积神经网络概率论概率论与数理统计笔记经验分享
目录简介卷积公式的推导与应用实际例子卷积公式在多维情况下的推导和应用是什么?多维卷积的推导多维卷积的应用延伸拓展如何使用卷积公式解决实际问题,例如信号处理中的噪声消除?在统计学中,卷积公式是如何应用于样本量估计和假设检验的?卷积公式在量子力学中的应用有哪些例子?如何证明卷积公式对于独立随机变量之和的概率密度函数的重要性?简介在概率论中,卷积公式是用于计算两个独立随机变量之和的概率密度函数的重要工具
- 每天一个数据分析题(五百零五)- 提升方法
跟着紫枫学姐学CDA
数据分析题库数据分析
提升方法(Boosting),是一种可以用来减小监督式学习中偏差的机器学习算法。基于Boosting的集成学习,其代表算法不包括?A.AdaboostB.GBDTC.XGBOOSTD.随机森林数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库,数据
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio