看了Spark Summit 2014的A Deeper Understanding of Spark Internals,视频(要科学上网)详细讲解了Spark的工作原理,Slides的45页给原始算法和优化算法。
破砂锅用自己3节点的Spark集群试验了这个优化算法,并进一步找到更快的算法。测试数据是Sogou实验室的日志文件前10000000条数据。目标是对日志第2列数据,按照第一个字母合并,得到每个首字母有几条记录。
所有的方案都重新启动Spark shell,先用以下代码把日志第2列数据cache到内存里,Spark GUI显示cache有8个partition,约1GB内存。
val rdd = sc.textFile("hdfs://hadoop1:8000/input/SogouQ3.txt").map(_.split("\t")).map(_(1)) rdd.cache() rdd.count() // res1: Long = 10000000
Spark GUI
RDD Name |
Storage Level |
Cached Partitions |
Fraction Cached |
Size in Memory |
Size in Tachyon |
Size on Disk |
3 |
Memory Deserialized 1x Replicated |
8 |
100% |
1089.4 MB |
0.0 B |
0.0 B |
rdd.map(x => (x.charAt(0), x)).groupByKey().mapValues({x => x.toSet.size}).collect() // res2: Array[(Char, Int)] = Array((8,168189), (0,168338), (a,168228), (9,168018), (1,167647), (b,168404), (2,168731), (3,168206), (c,168991), (d,168095), (4,167523), (e,168179), (5,167967), (6,167907), (f,168174), (7,168718))
Spark stage GUI显示有关stage Id是1-2,累计耗时5s,产生140MB shuffle read和208MB shuffle write。
Stage Id |
Description |
Submitted |
Duration |
Tasks: Succeeded/Total |
Shuffle Read |
Shuffle Write |
1 |
2014/09/03 20:51:58 |
3 s |
8/8 |
140.2 MB |
||
2 |
2014/09/03 20:51:55 |
2 s |
8/8 |
208.4 MB |
||
0 |
2014/09/03 20:51:46 |
8 s |
8/8 |
rdd.distinct(numPartitions = 6).map(x => (x.charAt(0), 1)).reduceByKey(_+_).collect() // res2: Array[(Char, Int)] = Array((6,167907), (0,168338), (f,168174), (7,168718), (a,168228), (1,167647), (8,168189), (b,168404), (2,168731), (9,168018), (3,168206), (c,168991), (d,168095), (4,167523), (e,168179), (5,167967))
Spark stage GUI显示有关stage Id是1-3,累计耗时4.2s,生成50MB shuffle read和75MB shuffle write。虽然多了1个stage,shuffle read/write比原始方案减少超过60%,从而速度加快16%。
Stage Id |
Description |
Submitted |
Duration |
Tasks: Succeeded/Total |
Shuffle Read |
Shuffle Write |
1 |
2014/09/03 20:24:17 |
0.2 s |
6/6 |
4.9 KB |
||
2 |
2014/09/03 20:24:15 |
2 s |
6/6 |
50.4 MB |
7.4 KB |
|
3 |
2014/09/03 20:24:13 |
2 s |
8/8 |
75.6 MB |
||
0 |
2014/09/03 20:23:55 |
7 s |
8/8 |
既然减少shuffle可以加快速度,破砂锅想出以下的Zero Shuffle方案来。
rdd.map(x => (x.charAt(0), x)).countByKey() // res2: scala.collection.Map[Char,Long] = Map(e -> 623689, 2 -> 623914, 5 -> 619840, b -> 626111, 8 -> 620738, d -> 623515, 7 -> 620222, 1 -> 616184, 4 -> 616628, a -> 641623, c -> 630514, 6 -> 621346, f -> 624447, 0 -> 632735, 9 -> 637770, 3 -> 620724)
Spark stage GUI显示有关stage Id是1,累计耗时只有0.3s,没有shuffle read/write。这个方案有关的RDD只有narrow dependency,所以只有1个stage。
Stage Id |
Description |
Submitted |
Duration |
Tasks: Succeeded/Total |
Shuffle Read |
Shuffle Write |
1 |
2014/09/03 20:45:02 |
0.3 s |
8/8 |
|||
0 |
2014/09/03 20:44:32 |
8 s |
比较3种方案
方案 |
Shuffle Read |
Shuffle Write |
Time |
Slides原始方案 |
140.2 MB |
208.4 MB |
5s |
Slides优化方案 |
50.4 MB |
75.6 MB |
4.2s |
Zero Shuffle优化方案 |
0 |
0 |
0.3s |
Spark的优化之一是尽可能减少shuffle从而大幅减少缓慢的网络传输。熟悉RDD的函数对Spark优化有很大帮助。