网络学习笔记-网络拓扑(一)

网络拓扑,顾名思义,不就是网络和拓扑组合在一起的新名词吗。这样理解很有道理,网络很好理解,关键是这个拓扑,首先来了解一下什么是拓扑。

网络学习笔记-网络拓扑(一)_第1张图片

什么是拓扑?

拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科。是一种不考虑物体的大小、形状等物理属性,而仅仅使用点或者线描述多个物体实际位置与关系的抽象表示方法。拓扑不关心事物的细节,也不在乎相互的比例关系,而只是图的形式表示一定范围内多个物体之间相互关系

拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现的一些孤立的问题,在后来的拓扑学的形成中占着重要的地位。

拓扑一词的由来?

"拓扑"是一个外来词,江泽涵先生把Topo音译为“拓扑”!

江泽涵(1902-1994年),安徽旌德人,1926年毕业于南开大学数学系教授,1955年当选为中国科学院数理学部委员。他是把拓扑学引入中国的第一人,他出版的《拓扑学引论》是中国人编写的第一部拓扑学教材。

译Topo为拓扑,音义兼顾,形神俱备———“拓”者,对土地之开发也,“扑”者,全面覆盖也。

什么是网络拓扑?

网络拓扑(Network Topology)结构是指用传输介质互连各种设备的物理布局。指构成网络的成员间特定的物理的即真实的、或者逻辑的即虚拟的排列方式。如果两个网络的连接结构相同我们就说它们的网络拓扑相同,尽管它们各自内部的物理接线、节点间距离可能会有不同。

在实际生活中,计算机与网络设备要实现互联,就必须使用一定的组织结构进行连接,这种组织结构就叫做“拓扑结构”。网络拓扑结构形象地描述了网络的安排和配置方式,以及各节点之间的相互关系,通俗地说,“拓扑结构”就是指这些计算机与通讯设备是如何连接在一起的。

研究网络和它的线图的拓扑性质的理论,又称网络图论。拓扑是指几何体的一种接触关系或连接关系;当几何体发生连续塑性变形时,它的接触关系会保持不变。用节点和支路组成的线图表示的网络结构也具有这种性质。

网络拓朴的早期研究始于1736年瑞士数学家L.欧拉发表的关于柯尼斯堡桥问题的论文。1845年和1847年,G.R.基尔霍夫发表的两篇论文为网络奠定了基础。

网络拓扑的组成结构

在设计网络拓扑结构时,我们经常会遇到如“节点”、“结点”、”链路”和“通路”这四个术语。它们到底各自代表什么,它们之间又有什么关系呢?

(1) 节点

一个“节点”其实就是一个网络端口。节点又分为“转节点”和“访问节点”两类。“转节点”的作用是支持网络的连接,它通过通信线路转接和传递信息,如交换机、网关、路由器、防火墙设备的各个[网络端口]等;而“访问节点”是信息交换的源点和目标点,通常是用户计算机上的网卡接口。如我们在设计一个网络系统时,通常所说的共有××个节点,其实就是在网络中有多个要配置IP地址的网络端口。

(2)结点

一个“结点”是指一台网络设备,因为它们通常连接了多个“节点”,所以称之为“结点”。在计算机网络中的结点又分为链路结点和路由结点,它们就分别对应的是网络中的交换机和路由器。从网络中的结点数多少就可以大概知道你的计算机网络规模和基本结构了。

(3)链路

“链路”是两个节点间的线路。链路分物理链路和逻辑链路(或称数据链路)两种,前者是指实际存在的通信线路,由设备网络端口和传输介质连接实现;后者是指在逻辑上起作用的网络通路,由计算机网络体系结构中的数据链路层标准和协议来实现。如果链路层协议没有起作用,数据链路也就无法建立起来。

(4)通路

“通路”从发出信息的节点到接收信息的节点之间的一串节点和链路的组合。也就是说,它是一系列穿越通信网络而建立起来的节点到节点的链路串连。它与“链路”的区别主要在于一条“通路”中可能包括多条“链路”。

网络拓扑的分类与优缺点

网络学习笔记-网络拓扑(一)_第2张图片

星型拓扑结构

在星型拓扑结构中,网络中的各节点通过点到点的方式连接到一个中央节点(又称中央转接站,一般是集线器或交换机)上,由该中央节点向目的节点传送信息。

常用于局域网中。

网络学习笔记-网络拓扑(一)_第3张图片

星形拓扑结构的主要优点有:

1.结构简单,容易管理维护;

2.重新配置灵活;

3.连接点的故障容易监测和排除,方便故障检测与隔离;

4.控制简单,便于建网;

5.网络延迟时间较小,传输误差较低;

星形拓扑结构的主要缺点有:

1.成本高、可靠性较低;

2.中心结点是全网络的可靠瓶颈,中心结点出现故障会导致网络的瘫痪。

环型拓扑结构

各结点通过通信线路组成闭合回路,环中数据只能单向传输。

最著名的环形拓扑结构网络是令牌环网。

网络学习笔记-网络拓扑(一)_第4张图片

优点:结构简单、容易实现,适合使用光纤,传输距离远,传输延迟确定。

优点是由于每个节点都同时与两个方向的各一个节点相连接,此路不通彼路通,因此环状拓扑具有天然的容错性,结构简单、容易实现,适合使用光纤,传输距离远,传输延迟确定。

缺点是由于存在来自两个方向的数据流,因此必须对这两个方向加以区分,或者进行限制,以避免无法区分的冗余数据流对正常通信的干扰。环网中的每个结点均成为网络可靠性的瓶颈,任意结点出现故障都会造成网络瘫痪,管理和维护比较复杂。

总线型拓扑结构

总线拓扑的网络结构是将网络中的各个节点设备用一根总线(如同轴电缆等)挂接起来,实现计算机网络的功能。

任何连接在总线上的计算机都能在总线上发信号,并且所有计算机都能接收信号。

以太网,还有大部分的局域网(如校园网)为总线拓扑结构。

网络学习笔记-网络拓扑(一)_第5张图片

优点:结构简单、布线容易、可靠性较高,易于扩充,是局域网常采用的拓扑结构

缺点:所有的数据都需经过总线传送,总线成为整个网络的瓶颈;维护难、单点的结构可能会影响全网络,出现故障诊断较为困难.

树形拓扑:

是一种层次结构,结点按层次连结,信息交换主要在上下结点之间进行,相邻结点或同层结点之间一般不进行数据交换。

网络学习笔记-网络拓扑(一)_第6张图片

优点:连结简单,维护方便,适用于汇集信息的应用要求。

缺点:资源共享能力较低,可靠性不高,任何一个工作站或链路的故障都会影响整个网络的运行。

网状拓扑:

网状拓扑,又称作无规则结构,结点之间的联结是任意的,没有规律。

目前广域网基本上采用网状拓扑结构。

网络学习笔记-网络拓扑(一)_第7张图片

优点:系统可靠性高,比较容易扩展,但是结构复杂,每一结点都与多点进行连结,因此必须采用路由算法和流量控制方法。

缺点:控制复杂,软件复杂;线路费用高,不易扩充;在以太网中,如果设置不当,会造成广播风暴,严重时可以使网络完全瘫痪。

网络拓扑的相关概念:

中继器:物理层,一般用于局域网。主要用来加强信号。

集线器(HUB):物理层,一般用于局域网。是数据通信系统中的基础设备。
集线器所起的作用相当于多端口的中继器。其实,集线器实际上就是中继器的一种,其区别仅在于集线器能够提供更多的端口服务,所以集线器又叫多口中继器。

路由器:网络层,一般用于万维网。
路由器利用网络层定义的“逻辑”上的网络地址(即IP地址)来区别不同的网络,实现网络的互连和隔离,保持各个网络的独立性。路由器不转发广播消息,而把广播消息限制在各自的网络内部。发送到其他网络的数据茵先被送到路由器,再由路由器转发出去。

桥接器:数据链路层,一般用于万维网。
在实际运作上,桥接器会将所收到资料的封包位置与它已知的网路区段位址做比对,如果封包位址不在同一个网路区段,就将资料转送出去。

网络学习笔记-网络拓扑(一)_第8张图片
网络学习笔记-网络拓扑(一)_第9张图片

你可能感兴趣的:(网络学习笔记-网络拓扑(一))