现在我们来对每一步的细节进行源码分析,在第一步中,符合条件会进行初始化操作,我们来看看initTable()方法
/**
- Initializes table, using the size recorded in sizeCtl.
*/
private final Node
[] initTable() { Node
[] tab; int sc; while ((tab = table) == null || tab.length == 0) {//空的table才能进入初始化操作 if ((sc = sizeCtl) < 0) //sizeCtl<0表示其他线程已经在初始化了或者扩容了,挂起当前线程 Thread.yield(); // lost initialization race; just spin else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {//CAS操作SIZECTL为-1,表示初始化状态 try { if ((tab = table) == null || tab.length == 0) { int n = (sc > 0) ? sc : DEFAULT_CAPACITY; @SuppressWarnings("unchecked") Node [] nt = (Node [])new Node,?>[n];//初始化 table = tab = nt; sc = n - (n >>> 2);//记录下次扩容的大小 } } finally { sizeCtl = sc; } break; } } return tab; }
在第二步中没有hash冲突就直接调用Unsafe的方法CAS插入该元素,进入第三步如果容器正在扩容,则会调用helpTransfer()方法帮助扩容,现在我们跟进helpTransfer()方法看看
/**
*帮助从旧的table的元素复制到新的table中
*/
final Node
[] helpTransfer(Node [] tab, Node f) { Node
[] nextTab; int sc; if (tab != null && (f instanceof ForwardingNode) && (nextTab = ((ForwardingNode )f).nextTable) != null) { //新的table nextTba已经存在前提下才能帮助扩容 int rs = resizeStamp(tab.length); while (nextTab == nextTable && table == tab && (sc = sizeCtl) < 0) { if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || transferIndex <= 0) break; if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) { transfer(tab, nextTab);//调用扩容方法 break; } } return nextTab; } return table; }
其实helpTransfer()方法的目的就是调用多个工作线程一起帮助进行扩容,这样的效率就会更高,而不是只有检查到要扩容的那个线程进行扩容操作,其他线程就要等待扩容操作完成才能工作。
既然这里涉及到扩容的操作,我们也一起来看看扩容方法transfer()
private final void transfer(Node
[] tab, Node [] nextTab) { int n = tab.length, stride; // 每核处理的量小于16,则强制赋值16 if ((stride = (NCPU > 1) ? (n >>> 3) / NCPU : n) < MIN_TRANSFER_STRIDE) stride = MIN_TRANSFER_STRIDE; // subdivide range if (nextTab == null) { // initiating try { @SuppressWarnings("unchecked") Node
[] nt = (Node [])new Node,?>[n << 1]; //构建一个nextTable对象,其容量为原来容量的两倍 nextTab = nt; } catch (Throwable ex) { // try to cope with OOME sizeCtl = Integer.MAX_VALUE; return; } nextTable = nextTab; transferIndex = n; } int nextn = nextTab.length; // 连接点指针,用于标志位(fwd的hash值为-1,fwd.nextTable=nextTab) ForwardingNode fwd = new ForwardingNode (nextTab); // 当advance == true时,表明该节点已经处理过了 boolean advance = true; boolean finishing = false; // to ensure sweep before committing nextTab for (int i = 0, bound = 0;;) { Node f; int fh; // 控制 --i ,遍历原hash表中的节点 while (advance) { int nextIndex, nextBound; if (--i >= bound || finishing) advance = false; else if ((nextIndex = transferIndex) <= 0) { i = -1; advance = false; } // 用CAS计算得到的transferIndex else if (U.compareAndSwapInt (this, TRANSFERINDEX, nextIndex, nextBound = (nextIndex > stride ? nextIndex - stride : 0))) { bound = nextBound; i = nextIndex - 1; advance = false; } } if (i < 0 || i >= n || i + n >= nextn) { int sc; // 已经完成所有节点复制了 if (finishing) { nextTable = null; table = nextTab; // table 指向nextTable sizeCtl = (n << 1) - (n >>> 1); // sizeCtl阈值为原来的1.5倍 return; // 跳出死循环, } // CAS 更扩容阈值,在这里面sizectl值减一,说明新加入一个线程参与到扩容操作 if (U.compareAndSwapInt(this, SIZECTL, sc = sizeCtl, sc - 1)) { if ((sc - 2) != resizeStamp(n) << RESIZE_STAMP_SHIFT) return; finishing = advance = true; i = n; // recheck before commit } } // 遍历的节点为null,则放入到ForwardingNode 指针节点 else if ((f = tabAt(tab, i)) == null) advance = casTabAt(tab, i, null, fwd); // f.hash == -1 表示遍历到了ForwardingNode节点,意味着该节点已经处理过了 // 这里是控制并发扩容的核心 else if ((fh = f.hash) == MOVED) advance = true; // already processed else { // 节点加锁 synchronized (f) { // 节点复制工作 if (tabAt(tab, i) == f) { Node ln, hn; // fh >= 0 ,表示为链表节点 if (fh >= 0) { // 构造两个链表 一个是原链表 另一个是原链表的反序排列 int runBit = fh & n; Node lastRun = f; for (Node p = f.next; p != null; p = p.next) { int b = p.hash & n; if (b != runBit) { runBit = b; lastRun = p; } } if (runBit == 0) { ln = lastRun; hn = null; } else { hn = lastRun; ln = null; } for (Node p = f; p != lastRun; p = p.next) { int ph = p.hash; K pk = p.key; V pv = p.val; if ((ph & n) == 0) ln = new Node (ph, pk, pv, ln); else hn = new Node (ph, pk, pv, hn); } // 在nextTable i 位置处插上链表 setTabAt(nextTab, i, ln); // 在nextTable i + n 位置处插上链表 setTabAt(nextTab, i + n, hn); // 在table i 位置处插上ForwardingNode 表示该节点已经处理过了 setTabAt(tab, i, fwd); // advance = true 可以执行--i动作,遍历节点 advance = true; } // 如果是TreeBin,则按照红黑树进行处理,处理逻辑与上面一致 else if (f instanceof TreeBin) { TreeBin t = (TreeBin )f; TreeNode lo = null, loTail = null; TreeNode hi = null, hiTail = null; int lc = 0, hc = 0; for (Node e = t.first; e != null; e = e.next) { int h = e.hash; TreeNode p = new TreeNode (h, e.key, e.val, null, null); if ((h & n) == 0) { if ((p.prev = loTail) == null) lo = p; else loTail.next = p; loTail = p; ++lc; } else { if ((p.prev = hiTail) == null) hi = p; else hiTail.next = p; hiTail = p; ++hc; } } // 扩容后树节点个数若<=6,将树转链表 ln = (lc <= UNTREEIFY_THRESHOLD) ? untreeify(lo) : (hc != 0) ? new TreeBin (lo) : t; hn = (hc <= UNTREEIFY_THRESHOLD) ? untreeify(hi) : (lc != 0) ? new TreeBin (hi) : t; setTabAt(nextTab, i, ln); setTabAt(nextTab, i + n, hn); setTabAt(tab, i, fwd); advance = true; } } } } } }
扩容过程有点复杂,这里主要涉及到多线程并发扩容,ForwardingNode的作用就是支持扩容操作,将已处理的节点和空节点置为ForwardingNode,并发处理时多个线程经过ForwardingNode就表示已经遍历了,就往后遍历,下图是多线程合作扩容的过程:
介绍完扩容过程,我们再次回到put流程,在第四步中是向链表或者红黑树里加节点,到第五步,会调用treeifyBin()方法进行链表转红黑树的过程。
private final void treeifyBin(Node
[] tab, int index) { Node
b; int n, sc; if (tab != null) { //如果整个table的数量小于64,就扩容至原来的一倍,不转红黑树了 //因为这个阈值扩容可以减少hash冲突,不必要去转红黑树 if ((n = tab.length) < MIN_TREEIFY_CAPACITY) tryPresize(n << 1); else if ((b = tabAt(tab, index)) != null && b.hash >= 0) { synchronized (b) { if (tabAt(tab, index) == b) { TreeNode hd = null, tl = null; for (Node e = b; e != null; e = e.next) { //封装成TreeNode TreeNode p = new TreeNode (e.hash, e.key, e.val, null, null); if ((p.prev = tl) == null) hd = p; else tl.next = p; tl = p; } //通过TreeBin对象对TreeNode转换成红黑树 setTabAt(tab, index, new TreeBin (hd)); } } } } }
到第六步表示已经数据加入成功了,现在调用addCount()方法计算ConcurrentHashMap的size,在原来的基础上加一,现在来看看addCount()方法。
private final void addCount(long x, int check) {
CounterCell[] as; long b, s; //更新baseCount,table的数量,counterCells表示元素个数的变化 if ((as = counterCells) != null || !U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) { CounterCell a; long v; int m; boolean uncontended = true; //如果多个线程都在执行,则CAS失败,执行fullAddCount,全部加入count if (as == null || (m = as.length - 1) < 0 || (a = as[ThreadLocalRandom.getProbe() & m]) == null || !(uncontended = U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) { fullAddCount(x, uncontended); return; } if (check <= 1) return; s = sumCount(); } //check>=0表示需要进行扩容操作 if (check >= 0) { Node
[] tab, nt; int n, sc; while (s >= (long)(sc = sizeCtl) && (tab = table) != null && (n = tab.length) < MAXIMUM_CAPACITY) { int rs = resizeStamp(n); if (sc < 0) { if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 || sc == rs + MAX_RESIZERS || (nt = nextTable) == null || transferIndex <= 0) break; if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1)) transfer(tab, nt); } //当前线程发起库哦哦让操作,nextTable=null else if (U.compareAndSwapInt(this, SIZECTL, sc, (rs << RESIZE_STAMP_SHIFT) + 2)) transfer(tab, null); s = sumCount(); } } }
put的流程现在已经分析完了,你可以从中发现,他在并发处理中使用的是乐观锁,当有冲突的时候才进行并发处理,而且流程步骤很清晰,但是细节设计的很复杂,毕竟多线程的场景也复杂。
get操作
我们现在要回到开始的例子中,我们对个人信息进行了新增之后,我们要获取所新增的信息,使用String name = map.get(“name”)获取新增的name信息,现在我们依旧用debug的方式来分析下ConcurrentHashMap的获取方法get()
public V get(Object key) {
Node
[] tab; Node e, p; int n, eh; K ek; int h = spread(key.hashCode()); //计算两次hash if ((tab = table) != null && (n = tab.length) > 0 && (e = tabAt(tab, (n - 1) & h)) != null) {//读取首节点的Node元素 if ((eh = e.hash) == h) { //如果该节点就是首节点就返回 if ((ek = e.key) == key || (ek != null && key.equals(ek))) return e.val; } //hash值为负值表示正在扩容,这个时候查的是ForwardingNode的find方法来定位到nextTable来 //查找,查找到就返回 else if (eh < 0) return (p = e.find(h, key)) != null ? p.val : null; while ((e = e.next) != null) {//既不是首节点也不是ForwardingNode,那就往下遍历 if (e.hash == h && ((ek = e.key) == key || (ek != null && key.equals(ek)))) return e.val; } } return null; }
ConcurrentHashMap的get操作的流程很简单,也很清晰,可以分为三个步骤来描述:
计算hash值,定位到该table索引位置,如果是首节点符合就返回
如果遇到扩容的时候,会调用标志正在扩容节点ForwardingNode的find方法,查找该节点,匹配就返回
以上都不符合的话,就往下遍历节点,匹配就返回,否则最后就返回null
size操作
最后我们来看下例子中最后获取size的方式int size = map.size();,现在让我们看下size()方法:
public int size() {
long n = sumCount(); return ((n < 0L) ? 0 : (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE : (int)n);
}
final long sumCount() {
CounterCell[] as = counterCells; CounterCell a; //变化的数量 long sum = baseCount; if (as != null) { for (int i = 0; i < as.length; ++i) { if ((a = as[i]) != null) sum += a.value; } } return sum;
}
在JDK1.8版本中,对于size的计算,在扩容和addCount()方法就已经有处理了,JDK1.7是在调用size()方法才去计算,其实在并发集合中去计算size是没有多大的意义的,因为size是实时在变的,只能计算某一刻的大小,但是某一刻太快了,人的感知是一个时间段,所以并不是很精确。
总结与思考
其实可以看出JDK1.8版本的ConcurrentHashMap的数据结构已经接近HashMap,相对而言,ConcurrentHashMap只是增加了同步的操作来控制并发,从JDK1.7版本的ReentrantLock+Segment+HashEntry,到JDK1.8版本中synchronized+CAS+HashEntry+红黑树,相对而言,总结如下思考:
JDK1.8的实现降低锁的粒度,JDK1.7版本锁的粒度是基于Segment的,包含多个HashEntry,而JDK1.8锁的粒度就是HashEntry(首节点)
JDK1.8版本的数据结构变得更加简单,使得操作也更加清晰流畅,因为已经使用synchronized来进行同步,所以不需要分段锁的概念,也就不需要Segment这种数据结构了,由于粒度的降低,实现的复杂度也增加了
JDK1.8使用红黑树来优化链表,基于长度很长的链表的遍历是一个很漫长的过程,而红黑树的遍历效率是很快的,代替一定阈值的链表,这样形成一个最佳拍档
JDK1.8为什么使用内置锁synchronized来代替重入锁ReentrantLock,我觉得有以下几点:
因为粒度降低了,在相对而言的低粒度加锁方式,synchronized并不比ReentrantLock差,在粗粒度加锁中ReentrantLock可能通过Condition来控制各个低粒度的边界,更加的灵活,而在低粒度中,Condition的优势就没有了
JVM的开发团队从来都没有放弃synchronized,而且基于JVM的synchronized优化空间更大,使用内嵌的关键字比使用API更加自然
在大量的数据操作下,对于JVM的内存压力,基于API的ReentrantLock会开销更多的内存,虽然不是瓶颈,但是也是一个选择依据
参考
http://blog.csdn.net/u010412719/article/details/52145145
http://www.jianshu.com/p/e694f1e868ec
https://my.oschina.net/liuxiaomian/blog/880088
https://bentang.me/tech/2016/12/01/jdk8-concurrenthashmap-1/
http://cmsblogs.com/?p=2283