scikit-learn KNN实现糖尿病预测

随书代码,阅读笔记。

KNN是一种有监督的机器学习算法,可以解决分类问题,也可以解决回归问题。

算法优点:准确性高,对异常值和噪声有较高的容忍度;

算法缺点:计算量大,内存消耗也比较大。

针对算法计算量大,有一些改进的数据结构,避免重复计算K-D Tree, Ball Tree。

算法变种:根据邻居的距离,分配不同权重。另外一个变种是指定半径。

  • KNN进行分类
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd


from sklearn.datasets.samples_generator import make_blobs
# 生成数据
centers = [[-2, 2], [2, 2], [0, 4]]
X, y = make_blobs(n_samples=60, centers=centers, random_state=0, cluster_std=0.60)

# 画出数据
plt.figure(figsize=(16, 10), dpi=144)
c = np.array(centers)
plt.scatter(X[:, 0], X[:, 1], c=y, s=100, cmap='cool');         # 画出样本
plt.scatter(c[:, 0], c[:, 1], s=100, marker='^', c='orange');   # 画出中心点



from sklearn.neighbors import KNeighborsClassifier
# 模型训练
k = 5
clf = KNeighborsClassifier(n_neighbors=k)
clf.fit(X, y);




# 进行预测
X_sample = [0, 2]
y_sample = clf.predict(X_sample);
neighbors = clf.kneighbors(X_sample, return_distance=False);

# 画出示意图
plt.figure(figsize=(16, 10), dpi=144)
plt.scatter(X[:, 0], X[:, 1], c=y, s=100, cmap='cool');    # 样本
plt.scatter(c[:, 0], c[:, 1], s=100, marker='^', c='k');   # 中心点
plt.scatter(X_sample[0], X_sample[1], marker="x", 
            c=y_sample, s=100, cmap='cool')    # 待预测的点

for i in neighbors[0]:
    plt.plot([X[i][0], X_sample[0]], [X[i][1], X_sample[1]], 
             'k--', linewidth=0.6);    # 预测点与距离最近的 5 个样本的连线

scikit-learn KNN实现糖尿病预测_第1张图片

  • KNN进行回归拟合


%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np



# 生成训练样本
n_dots = 40
X = 5 * np.random.rand(n_dots, 1)
y = np.cos(X).ravel()

# 添加一些噪声
y += 0.2 * np.random.rand(n_dots) - 0.1

# 训练模型
from sklearn.neighbors import KNeighborsRegressor
k = 5
knn = KNeighborsRegressor(k)
knn.fit(X, y);

# 生成足够密集的点并进行预测
T = np.linspace(0, 5, 500)[:, np.newaxis]
y_pred = knn.predict(T)
knn.score(X, y)

#output:0.98579189493611052

# 画出拟合曲线
plt.figure(figsize=(16, 10), dpi=144)
plt.scatter(X, y, c='g', label='data', s=100)         # 画出训练样本
plt.plot(T, y_pred, c='k', label='prediction', lw=4)  # 画出拟合曲线
plt.axis('tight')
plt.title("KNeighborsRegressor (k = %i)" % k)
plt.show()

scikit-learn KNN实现糖尿病预测_第2张图片

  • KNN 实现糖尿病预测
    
    
    %matplotlib inline
    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    
    # 加载数据
    data = pd.read_csv('datasets/pima-indians-diabetes/diabetes.csv')
    print('dataset shape {}'.format(data.shape))
    data.head()
    
    
    data.groupby("Outcome").size()
    #Outcome
    #0    500 无糖尿病
    #1    268 有糖尿病
    #dtype: int64
    
    
    X = data.iloc[:, 0:8]
    Y = data.iloc[:, 8]
    print('shape of X {}; shape of Y {}'.format(X.shape, Y.shape))
    
    
    
    from sklearn.model_selection import train_test_split
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2);
    
    from sklearn.neighbors import KNeighborsClassifier, RadiusNeighborsClassifier
    
    models = []
    models.append(("KNN", KNeighborsClassifier(n_neighbors=2)))
    models.append(("KNN with weights", KNeighborsClassifier(
        n_neighbors=2, weights="distance")))
    models.append(("Radius Neighbors", RadiusNeighborsClassifier(
        n_neighbors=2, radius=500.0)))
    
    
    
    results = []
    for name, model in models:
        model.fit(X_train, Y_train)
        results.append((name, model.score(X_test, Y_test)))
    for i in range(len(results)):
        print("name: {}; score: {}".format(results[i][0],results[i][1]))
    
    #name: KNN; score: 0.681818181818
    #name: KNN with weights; score: 0.636363636364
    #name: Radius Neighbors; score: 0.62987012987
    
    from sklearn.model_selection import KFold
    from sklearn.model_selection import cross_val_score
    
    #kfold 训练10次,计算10次的平均准确率
    results = []
    for name, model in models:
        kfold = KFold(n_splits=10)
        cv_result = cross_val_score(model, X, Y, cv=kfold)
        results.append((name, cv_result))
    for i in range(len(results)):
        print("name: {}; cross val score: {}".format(
            results[i][0],results[i][1].mean()))
    
    #name: KNN; cross val score: 0.714764183185
    #name: KNN with weights; cross val score: 0.677050580998
    #name: Radius Neighbors; cross val score: 0.6497265892
    
    
    #模型训练
    knn = KNeighborsClassifier(n_neighbors=2)
    knn.fit(X_train, Y_train)
    train_score = knn.score(X_train, Y_train)
    test_score = knn.score(X_test, Y_test)
    print("train score: {}; test score: {}".format(train_score, test_score))
    
    
    #画出学习曲线
    from sklearn.model_selection import ShuffleSplit
    from common.utils import plot_learning_curve
    
    knn = KNeighborsClassifier(n_neighbors=2)
    cv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0)
    plt.figure(figsize=(10, 6), dpi=200)
    plot_learning_curve(plt, knn, "Learn Curve for KNN Diabetes", 
                        X, Y, ylim=(0.0, 1.01), cv=cv);
    
    #数据可视化
    # 从8个特征中选择2个最重要的特征进行可视化
    
    from sklearn.feature_selection import SelectKBest
    
    selector = SelectKBest(k=2)
    X_new = selector.fit_transform(X, Y)
    X_new[0:5]
    
    results = []
    for name, model in models:
        kfold = KFold(n_splits=10)
        cv_result = cross_val_score(model, X_new, Y, cv=kfold)
        results.append((name, cv_result))
    for i in range(len(results)):
        print("name: {}; cross val score: {}".format(
            results[i][0],results[i][1].mean()))
    
    
    
    # 画出数据
    plt.figure(figsize=(10, 6), dpi=200)
    plt.ylabel("BMI")
    plt.xlabel("Glucose")
    plt.scatter(X_new[Y==0][:, 0], X_new[Y==0][:, 1], c='r', s=20, marker='o');         # 画出样本
    plt.scatter(X_new[Y==1][:, 0], X_new[Y==1][:, 1], c='g', s=20, marker='^');         # 画出样本
    
    #2个特征和8个特征得到的结果差不多。分类效果达到了瓶颈
    
    
    
    
    
    
    

    scikit-learn KNN实现糖尿病预测_第3张图片scikit-learn KNN实现糖尿病预测_第4张图片

KNN对糖尿病进行测试,无法得到比较高的预测准确性

扩展阅读

你可能感兴趣的:(模式识别与机器学习)