这部分是PART III和PART IV。
Diffusion Tensor Imaging and Functional MRI: Diffusion Tensor Imaging(扩散张量成像和功能性MRI:扩散张量成像) | 概要 |
---|---|
1.Multimodal Fusion of Brain Networks with Longitudinal Couplings 纵向联轴器脑网络多峰融合 |
|
2.Penalized Geodesic Tractography for Mitigating Gyral Bias 用于减轻古尔偏见的受到惩罚的测地牵引 |
|
3.Anchor-Constrained Plausibility (ACP): A Novel Concept for Assessing Tractography and Reducing False-Positives 锚限制合理性(ACP):评估牵引和减少假阳性的新概念 |
|
4.Tract-Specific Group Analysis in Fetal Cohorts Using in utero Diffusion Tensor Imaging 胎儿队列中使用子宫扩散张量成像的胎儿组特异性组分析 |
|
5.Tract Orientation Mapping for Bundle-Specific Tractography 特定于捆绑牵引的机构定向映射 |
|
6.A Multi-Tissue Global Estimation Framework for Asymmetric Fiber Orientation Distributions 用于不对称纤维取向分布的多组织全局估计框架 |
Diffusion Tensor Imaging and Functional MRI: Diffusion Weighted Imaging(扩散张量成像和功能MRI:扩散加权成像) | 概要 |
---|---|
7.Better Fiber ODFs from Suboptimal Data with Autoencoder Based Regularization 具有基于AutoEncoder的正规化的次优数据的更好的光纤ODF |
|
8.Identification of Gadolinium Contrast Enhanced Regions in MS Lesions Using Brain Tissue Microstructure Information Obtained from Diffusion and T2 Relaxometry MRI 使用从扩散和T2弛豫MRI获得的脑组织微观结构信息鉴定MS病变中的钆对比增强区域 |
|
9.A Bayes Hilbert Space for Compartment Model Computing in Diffusion MRI 一个贝叶斯希尔伯特空间用于分组模型计算MRI |
|
10.Detection and Delineation of Acute Cerebral Infarct on DWI Using Weakly Supervised Machine Learning 利用虚线监督机学习检测和描绘急性脑梗塞对DWI的影响 |
|
11.Identification of Species-Preserved Cortical Landmarks 鉴定物种保存的皮质地标 |
|
12.Deep Learning with Synthetic Diffusion MRI Data for Free-Water Elimination in Glioblastoma Cases 深度学习与合成扩散MRI数据进行胶质母细胞瘤病例的自由水消除 |
|
13.Enhancing Clinical MRI Perfusion Maps with Data-Driven Maps of Complementary Nature for Lesion Outcome Prediction 增强临床MRI灌注图,利用数据驱动的互补性地图进行病变结果预测 |
|
14.Harmonizing Diffusion MRI Data Across Magnetic Field Strengths 跨磁场强度协调扩散MRI数据 |
Diffusion Tensor Imaging and Functional MRI: Functional MRI(扩散张量成像和功能性MRI:功能性MRI) | 概要 |
---|---|
15.Normative Modeling of Neuroimaging Data Using Scalable Multi-task Gaussian Processes 可伸缩多任务高斯过程的神经影像数据规范建模 |
|
16.Multi-layer Large-Scale Functional Connectome Reveals Infant Brain Developmental Patterns 多层大型功能连接揭示婴儿脑发育模式 |
|
17.A Riemannian Framework for Longitudinal Analysis of Resting-State Functional Connectivity 静态稳态功能连通性纵向分析的riemananian框架 |
|
18.Elastic Registration of Single Subject Task Based fMRI Signals 基于FMRI信号的单个主题任务的弹性注册 |
|
19.A Generative-Discriminative Basis Learning Framework to Predict Clinical Severity from Resting State Functional MRI Data 一种生成鉴别的基础学习框架,用于预测休息状态功能MRI数据的临床严重程度 |
|
20.3D Deep Convolutional Neural Network Revealed the Value of Brain Network Overlap in Differentiating Autism Spectrum Disorder from Healthy Controls 3D深度卷积神经网络揭示了脑网络重叠的价值,从健康对照中分化自闭症谱系 |
|
21.Modeling 4D fMRI Data via Spatio-Temporal Convolutional Neural Networks (ST-CNN) 通过时空卷积神经网络建模4D FMRI数据(ST-CNN) |
|
22.The Dynamic Measurements of Regional Brain Activity for Resting-State fMRI: d-ALFF, d-fALFF and d-ReHo Resting-State FMRI区域大脑活动的动态测量:D-ALFF,D-FALFF和D-REHO |
|
23.rfDemons: Resting fMRI-Based Cortical Surface Registration Using the BrainSync Transform RFDEMONS:使用BRISSYNC变换休息基于FMRI的皮质表面注册 |
|
24.Brain Biomarker Interpretation in ASD Using Deep Learning and fMRI 脑生物标志物在ASD中使用深层学习和FMRI解释 |
|
25.Neural Activation Estimation in Brain Networks During Task and Rest Using BOLD-fMRI 使用Bold-FMRI在任务期间脑网络中的神经激活估计 |
|
26.Identification of Multi-scale Hierarchical Brain Functional Networks Using Deep Matrix Factorization 使用深矩阵分解识别多尺度分层脑功能网络 |
|
27.Identification of Temporal Transition of Functional States Using Recurrent Neural Networks from Functional MRI 使用功能MRI复发性神经网络识别功能状态的时间转换 |
|
28.Identifying Personalized Autism Related Impairments Using Resting Functional MRI and ADOS Reports 使用休息功能MRI和ADOS报告识别个性化自闭症相关障碍 |
|
29.Deep Chronnectome Learning via Full Bidirectional Long Short-Term Memory Networks for MCI Diagnosis 深度Chronnectome通过全面的双向短期内存网络进行MCI诊断 |
|
30.Structured Deep Generative Model of fMRI Signals for Mental Disorder Diagnosis 精神障碍诊断的FMRI信号的结构化深生成模型 |
|
31.Cardiac Cycle Estimation for BOLD-fMRI Bold-FMRI的心脏周期估计 |
|
32.Probabilistic Source Separation on Resting-State fMRI and Its Use for Early MCI Identification 休息状态FMRI的概率源分离及其早期MCI识别的用途 |
|
33.Identifying Brain Networks of Multiple Time Scales via Deep Recurrent Neural Network 通过深度经常性神经网络识别多次尺度的大脑网络 |
|
34.A Novel Deep Learning Framework on Brain Functional Networks for Early MCI Diagnosis 关于早期MCI诊断脑功能网络的新型深度学习框架 |
|
35.A Region-of-Interest-Reweight 3D Convolutional Neural Network for the Analytics of Brain Information Processing 用于脑信息处理的分析的兴趣区域重新卷积3D卷积神经网络 |
|
36.Quantitative Deconvolution of fMRI Data with Multi-echo Sparse Paradigm Free Mapping FMRI数据与多回波稀疏范式免费映射的定量解卷 |
|
37.Brain Decoding from Functional MRI Using Long Short-Term Memory Recurrent Neural Networks 使用长短期记忆经常性神经网络从功能MRI进行脑解码 |
|
38.Learning Generalizable Recurrent Neural Networks from Small Task-fMRI Datasets 学习来自小型任务-FMRI数据集的可概括的经常性神经网络 |
Diffusion Tensor Imaging and Functional MRI: Human Connectome(扩散张量成像和功能性MRI:人类Connectome) | 概要 |
---|---|
39.Fast Mapping of the Eloquent Cortex by Learning L2 Penalties 通过学习L2处罚来快速绘制雄辩皮质 |
|
40.Combining Multiple Connectomes via Canonical Correlation Analysis Improves Predictive Models 通过规范相关分析结合多个Connectomes改善了预测模型 |
|
41.Exploring Fiber Skeletons via Joint Representation of Functional Networks and Structural Connectivity 通过功能网络和结构连接的关节表示探索光纤骨架 |
|
42.Phase Angle Spatial Embedding (PhASE) 相位角空间嵌入(阶段) |
|
43.Edema-Informed Anatomically Constrained Particle Filter Tractography 水肿通知的解剖学限制粒子过滤器牵引术 |
|
44.Thalamic Nuclei Segmentation Using Tractography, Population-Specific Priors and Local Fibre Orientation 使用牵引,人口特异性前锋和局部纤维定位的丘脑核细胞分割 |
|
45.On Quantifying Local Geometric Structures of Fiber Tracts 在量化纤维束的局部几何结构 |
Neuroimaging and Brain Segmentation Methods: Neuroimaging(神经影像和脑分割方法:神经影像) | 概要 |
---|---|
46.Modeling Longitudinal Voxelwise Feature Change in Normal Aging with Spatial-Anatomical Regularization 用空间解剖规范化模拟正常老化的纵向体轴特征变化 |
|
47.Volume-Based Analysis of 6-Month-Old Infant Brain MRI for Autism Biomarker Identification and Early Diagnosis 基于体积的自闭症生物标志物鉴定和早期诊断的6个月大婴儿脑研发分析 |
|
48.A Tetrahedron-Based Heat Flux Signature for Cortical Thickness Morphometry Analysis 用于皮质厚度形态学分析的四面体热通量签名 |
|
49.Graph of Brain Structures Grading for Early Detection of Alzheimer’s Disease 阿尔茨海默病早期检测脑结构图表 |
|
50.Joint Prediction and Classification of Brain Image Evolution Trajectories from Baseline Brain Image with Application to Early Dementia 从痴呆症到早期痴呆的基线脑图像脑图像演化轨迹的联合预测与分类 |
|
51.Temporal Correlation Structure Learning for MCI Conversion Prediction MCI转换预测的时间相关结构学习 |
|
52.Synthesizing Missing PET from MRI with Cycle-consistent Generative Adversarial Networks for Alzheimer’s Disease Diagnosis 从MRI合成缺失的宠物,循环一致的生成对抗网络用于阿尔茨海默病诊断 |
|
53.Exploratory Population Analysis with Unbalanced Optimal Transport 不平衡最优运输的探索性人口分析 |
|
54.Multi-modal Synthesis of ASL-MRI Features with KPLS Regression on Heterogeneous Data 基于非均匀数据的KPLS回归的ASL-MRI特征的多模态合成 |
|
55.A Novel Method for Epileptic Seizure Detection Using Coupled Hidden Markov Models 一种使用耦合隐马尔可夫模型的癫痫癫痫发作检测的新方法 |
|
56.Deep Convolutional Networks for Automated Detection of Epileptogenic Brain Malformations 深度卷积网络,用于自动检测癫痫脑畸形 |
|
57.Binary Glioma Grading: Radiomics versus Pre-trained CNN Features 二元胶质瘤分级:辐射瘤与预先训练的CNN特征 |
|
58.Automatic Irregular Texture Detection in Brain MRI Without Human Supervision 脑MRI自动不规则纹理检测,没有人为监督 |
|
59.Learning Myelin Content in Multiple Sclerosis from Multimodal MRI Through Adversarial Training 通过对抗训练从多峰MRI学习多发性硬化中的髓鞘含量 |
|
60.Deep Multi-structural Shape Analysis: Application to Neuroanatomy 深度多结构形状分析:神经肿瘤的应用 |
|
61.Computational Modelling of Pathogenic Protein Behaviour-Governing Mechanisms in the Brain 脑病病原蛋白行为控制机制的计算模拟 |
|
62.Generative Discriminative Models for Multivariate Inference and Statistical Mapping in Medical Imaging 医学成像中多元推理和统计映射的生成鉴别模型 |
|
63.Using the Anisotropic Laplace Equation to Compute Cortical Thickness 使用各向异性拉普拉斯方程来计算皮质厚度 |
|
64.Dilatation of Lateral Ventricles with Brain Volumes in Infants with 3D Transfontanelle US 患有3D Transfontanelle的婴儿的肾室内的侧脑室扩张 |
|
65.Do Baby Brain Cortices that Look Alike at Birth Grow Alike During the First Year of Postnatal Development? 婴儿脑皮质在出生后的出生发育的第一年时看起来很像吗? |
|
66.Multi-label Transduction for Identifying Disease Comorbidity Patterns 用于识别疾病合并症图案的多标签转导 |
|
67.Text to Brain: Predicting the Spatial Distribution of Neuroimaging Observations from Text Reports 脑中的文字:预测文本报告的神经影像观测的空间分布 |
Neuroimaging and Brain Segmentation Methods: Brain Segmentation Methods(神经影像和脑分割方法:脑分割方法) | 概要 |
---|---|
68.Semi-supervised Learning for Segmentation Under Semantic Constraint 语义约束下分割的半监督学习 |
|
69.Autofocus Layer for Semantic Segmentation 用于语义分割的自动对焦层 |
|
70.3D Segmentation with Exponential Logarithmic Loss for Highly Unbalanced Object Sizes 具有指数对数损耗的3D分割,用于高度不平衡对象大小 |
|
71.Revealing Regional Associations of Cortical Folding Alterations with In Utero Ventricular Dilation Using Joint Spectral Embedding 用关节谱嵌入,揭示皮质折叠改变与子宫心室扩张的区域关联 |
|
72.CompNet: Complementary Segmentation Network for Brain MRI Extraction CompNet:脑MRI提取的互补分割网络 |
|
73.One-Pass Multi-task Convolutional Neural Networks for Efficient Brain Tumor Segmentation 一移的多任务卷积神经网络,用于高效脑肿瘤分割 |
|
74.Deep Recurrent Level Set for Segmenting Brain Tumors 用于分割脑肿瘤的深度复发水平 |
|
75.Pulse Sequence Resilient Fast Brain Segmentation 脉冲序列弹性快速脑细分 |
|
76.Improving Cytoarchitectonic Segmentation of Human Brain Areas with Self-supervised Siamese Networks 自我监督暹罗网络改善人脑区域的细胞建筑分割 |
|
77.Registration-Free Infant Cortical Surface Parcellation Using Deep Convolutional Neural Networks 使用深卷积神经网络免费无注销的婴儿皮质表面锁定 |
|
78.Joint Segmentation of Intracerebral Hemorrhage and Infarct from Non-Contrast CT Images of Post-treatment Acute Ischemic Stroke Patients 治疗后急性缺血性脑卒中患者非对比度CT图像的脑出血和梗塞的联合分割 |
|
79.Patch-Based Mapping of Transentorhinal Cortex with a Distributed Atlas 基于补丁的Transentorhinal皮层与分布式Atlas的映射 |
|
80.Spatially Localized Atlas Network Tiles Enables 3D Whole Brain Segmentation from Limited Data 空间本地化的Atlas网络图块可以从有限数据中实现3D全脑分段 |
|
81.Adaptive Feature Recombination and Recalibration for Semantic Segmentation: Application to Brain Tumor Segmentation in MRI 语义分割的自适应特征重组和重新校准:在MRI中的脑肿瘤细分施用 |
|
82.Cost-Sensitive Active Learning for Intracranial Hemorrhage Detection 颅内出血检测的成本敏感的主动学习 |
Computer Assisted Interventions: Image Guided Interventions and Surgery(计算机辅助干预:图像引导干预和手术) | 概要 |
---|---|
1.Uncertainty in Multitask Learning: Joint Representations for Probabilistic MR-only Radiotherapy Planning 多任务学习中的不确定性:概率MR—ockIT治疗计划的联合表示 |
|
2.A Combined Simulation and Machine Learning Approach for Image-Based Force Classification During Robotized Intravitreal Injections 基于图像的力学分类的组合仿真和机器学习方法,在机器化玻璃体内注射过程中 |
|
3.Learning from Noisy Label Statistics: Detecting High Grade Prostate Cancer in Ultrasound Guided Biopsy 从嘈杂的标签统计学中学习:在超声引导活检中检测高级前列腺癌 |
|
4.A Feature-Driven Active Framework for Ultrasound-Based Brain Shift Compensation 一种特征驱动的基于超声的大脑移位补偿的活跃框架 |
|
5.Soft-Body Registration of Pre-operative 3D Models to Intra-operative RGBD Partial Body Scans 术前3D模型的软体登记到术语术中RGBD部分体扫描 |
|
6.Automatic Classification of Cochlear Implant Electrode Cavity Positioning 耳蜗植入电极腔定位的自动分类 |
|
7.X-ray-transform Invariant Anatomical Landmark Detection for Pelvic Trauma Surgery X射线变换不变解剖标志性地标检测骨盆创伤手术 |
|
8.Endoscopic Navigation in the Absence of CT Imaging 内窥镜导航在没有CT成像的情况下 |
|
9.A Novel Mixed Reality Navigation System for Laparoscopy Surgery 一种新型腹腔镜手术混合现实导航系统 |
|
10.Respiratory Motion Modelling Using cGANs 使用CGANS的呼吸运动建模 |
|
11.Physics-Based Simulation to Enable Ultrasound Monitoring of HIFU Ablation: An MRI Validation 基于物理的仿真,使HIFU消融的超声监测:MRI验证 |
|
12.DeepDRR – A Catalyst for Machine Learning in Fluoroscopy-Guided Procedures Deepdrr - 透视引导程序中的机器学习催化剂 |
|
13.Exploiting Partial Structural Symmetry for Patient-Specific Image Augmentation in Trauma Interventions 在创伤干预中利用患者特异性图像增强的部分结构对称 |
|
14.Intraoperative Brain Shift Compensation Using a Hybrid Mixture Model 使用杂交混合物模型进行术中脑移位补偿 |
|
15.Video-Based Computer Aided Arthroscopy for Patient Specific Reconstruction of the Anterior Cruciate Ligament 基于视频的计算机辅助关节镜检查患者特异性重建的前十字韧带 |
|
16.Simultaneous Segmentation and Classification of Bone Surfaces from Ultrasound Using a Multi-feature Guided CNN 超声波使用多函数引导CNN同时分割和分类超声波 |
|
17.Endoscopic Laser Surface Scanner for Minimally Invasive Abdominal Surgeries 用于微创腹腔手术的内窥镜激光表面扫描仪 |
|
18.Deep Adversarial Context-Aware Landmark Detection for Ultrasound Imaging 超声成像的深层对抗环境感知地标检测 |
|
19.Towards a Fast and Safe LED-Based Photoacoustic Imaging Using Deep Convolutional Neural Network 朝着使用深卷积神经网络的快速安全的LED光声成像 |
|
20.An Open Framework Enabling Electromagnetic Tracking in Image-Guided Interventions 一种开放式框架,可在图像引导干预中实现电磁跟踪 |
|
21.Colon Shape Estimation Method for Colonoscope Tracking Using Recurrent Neural Networks 使用反复性神经网络进行冒号形状估计方法 |
|
22.Towards Automatic Report Generation in Spine Radiology Using Weakly Supervised Framework 利用弱监督框架向脊柱放射学的自动报告生成 |
Computer Assisted Interventions: Surgical Planning, Simulation and Work Flow Analysis(计算机辅助干预:手术计划,模拟和工作流程分析) | 概要 |
---|---|
23.A Natural Language Interface for Dissemination of Reproducible Biomedical Data Science 一种用于传播可重复生物医学数据科学的自然语言界面 |
|
24.Spatiotemporal Manifold Prediction Model for Anterior Vertebral Body Growth Modulation Surgery in Idiopathic Scoliosis 特发性脊柱侧凸前椎体生长调制手术的时空歧管预测模型 |
|
25.Evaluating Surgical Skills from Kinematic Data Using Convolutional Neural Networks 使用卷积神经网络评估运动学数据的外科技能 |
|
26.Needle Tip Force Estimation Using an OCT Fiber and a Fused convGRU-CNN Architecture 针尖力估计使用OCT光纤和融合CONCRU-CNN架构 |
|
27.Fast GPU Computation of 3D Isothermal Volumes in the Vicinity of Major Blood Vessels for Multiprobe Cryoablation Simulation 快速GPU计算3D等温体积的主要血管附近,用于多级冷冻仿真 |
|
28.A Machine Learning Approach to Predict Instrument Bending in Stereotactic Neurosurgery 一种机器学习方法,以预测立体定向神经外科的仪器弯曲 |
|
29.Deep Reinforcement Learning for Surgical Gesture Segmentation and Classification 外科手势细分和分类的深度加固学习 |
|
30.Automated Performance Assessment in Transoesophageal Echocardiography with Convolutional Neural Networks 卷积神经网络转铁岩超声心动图中的自动性能评估 |
|
31.DeepPhase: Surgical Phase Recognition in CATARACTS Videos Deepphase:白内障视频中的外科阶段识别 |
|
32.Surgical Activity Recognition in Robot-Assisted Radical Prostatectomy Using Deep Learning 使用深度学习机器人辅助自由基前列腺切除术的外科活动识别 |
|
33.Unsupervised Learning for Surgical Motion by Learning to Predict the Future 通过学习预测未来的外科运动无监督 |
|
Computer Assisted Interventions: Visualization and Augmented Reality(计算机辅助干预:可视化和增强现实) | 概要 |
— | — |
34.Volumetric Clipping Surface: Un-occluded Visualization of Structures Preserving Depth Cues into Surrounding Organs 体积剪裁表面:将结构的未被闭塞可视化,将深度提示保持为周围的器官 |
|
35.Closing the Calibration Loop: An Inside-Out-Tracking Paradigm for Augmented Reality in Orthopedic Surgery 关闭校准环:在整形外科手术中增强现实的内外跟踪范式 |
|
36.Higher Order of Motion Magnification for Vessel Localisation in Surgical Video 手术录像中血管定位的高阶运动倍率 |
|
37.Simultaneous Surgical Visibility Assessment, Restoration, and Augmented Stereo Surface Reconstruction for Robotic Prostatectomy 机器人前列腺切除术同时进行手术可见性评估,恢复和增强立体声表面重建 |
|
38.Real-Time Augmented Reality for Ear Surgery 耳手术的实时增强现实 |
|
39.Framework for Fusion of Data- and Model-Based Approaches for Ultrasound Simulation 超声模拟数据和模型的融合框架框架 |
|
Image Segmentation Methods: General Image Segmentation Methods, Measures and Applications(图像分割方法:常规图像分割方法,措施和应用) | 概要 |
— | — |
40.Esophageal Gross Tumor Volume Segmentation Using a 3D Convolutional Neural Network 使用3D卷积神经网络食管总肿瘤体积分割 |
|
41.Deep Learning Based Instance Segmentation in 3D Biomedical Images Using Weak Annotation 利用弱注释基于3D生物医学图像的基于深度学习的实例分段 |
|
42.Learn the New, Keep the Old: Extending Pretrained Models with New Anatomy and Images 学习新的,保持旧:用新的解剖和图像扩展备用模型 |
|
43.ASDNet: Attention Based Semi-supervised Deep Networks for Medical Image Segmentation Asdnet:基于SEMI监督的医学图像分割的深度网络 |
|
44.MS-Net: Mixed-Supervision Fully-Convolutional Networks for Full-Resolution Segmentation MS-Net:用于全分辨率分割的混合监督全卷积网络 |
|
45.How to Exploit Weaknesses in Biomedical Challenge Design and Organization 如何利用生物医学挑战设计与组织的弱点 |
|
46.Accurate Weakly-Supervised Deep Lesion Segmentation Using Large-Scale Clinical Annotations: Slice-Propagated 3D Mask Generation from 2D RECIST 使用大规模临床注释准确弱弱监督的深部病变分割:从2D重新开始的切片传播的3D掩模生成 |
|
47.Semi-automatic RECIST Labeling on CT Scans with Cascaded Convolutional Neural Networks CT扫描与级联卷积神经网络的半自动重新标记 |
Image Segmentation Methods: Multi-organ Segmentation(图像分割方法:多器官分割) | 概要 |
---|---|
48.A Multi-scale Pyramid of 3D Fully Convolutional Networks for Abdominal Multi-organ Segmentation 腹部多器官分割的3D全卷积网络多尺度金字塔 |
|
49.3D U-JAPA-Net: Mixture of Convolutional Networks for Abdominal Multi-organ CT Segmentation 3D U-Japa-Net:腹部多器官CT分割的卷积网络混合 |
|
50.Training Multi-organ Segmentation Networks with Sample Selection by Relaxed Upper Confident Bound 通过轻松的上部自信界限培训多器官分段网络,采用样品选择 |
Image Segmentation Methods: Abdominal Segmentation Methods(图像分割方法:腹部分割方法) | 概要 |
---|---|
51.Bridging the Gap Between 2D and 3D Organ Segmentation with Volumetric Fusion Net 用容量融合网桥接2D和3D器官分割之间的差距 |
|
52.Segmentation of Renal Structures for Image-Guided Surgery 图像引导手术肾结构的分割 |
|
53.Kid-Net: Convolution Networks for Kidney Vessels Segmentation from CT-Volumes KID-NET:CT-VOLUMES肾脏血管分割的卷积网络 |
|
54.Local and Non-local Deep Feature Fusion for Malignancy Characterization of Hepatocellular Carcinoma 对肝细胞癌恶性表征的局部和非局部深色特征融合 |
|
55.A Novel Bayesian Model Incorporating Deep Neural Network and Statistical Shape Model for Pancreas Segmentation 一种新的贝叶斯模型,包括深神经网络和胰腺分割统计形状模型 |
|
56.Fine-Grained Segmentation Using Hierarchical Dilated Neural Networks 使用等级扩张神经网络进行细粒细分 |
|
57.Generalizing Deep Models for Ultrasound Image Segmentation 概括超声图像分割的深层模型 |
|
58.Inter-site Variability in Prostate Segmentation Accuracy Using Deep Learning 使用深度学习的前列腺分割精度的现场间变异性 |
|
59.Deep Learning-Based Boundary Detection for Model-Based Segmentation with Application to MR Prostate Segmentation 基于深度学习的基于模型分割的边界检测与前列腺分段 |
|
60.Deep Attentional Features for Prostate Segmentation in Ultrasound 超声中前列腺细分的深度注意特征 |
|
61.Accurate and Robust Segmentation of the Clinical Target Volume for Prostate Brachytherapy 前列腺近距离放射治疗的临床目标体积的准确性和强大的细分 |
Image Segmentation Methods: Cardiac Segmentation Methods(图像分割方法:心脏分割方法) | 概要 |
---|---|
62.Hashing-Based Atlas Ranking and Selection for Multiple-Atlas Segmentation 基于散列的Atlas对多atlas分段的排名和选择 |
|
63.Corners Detection for Bioresorbable Vascular Scaffolds Segmentation in IVOCT Images IVOCT图像中生物可吸收血管支架细分的角落检测 |
|
64.The Deep Poincaré Map: A Novel Approach for Left Ventricle Segmentation DeepPoincaré地图:左心室细分的新方法 |
|
65.Bayesian VoxDRN: A Probabilistic Deep Voxelwise Dilated Residual Network for Whole Heart Segmentation from 3D MR Images Bayesian Voxdrn:3D MR图像的整个心脏细分的概率深voxelwise扩张剩余网络 |
|
66.Real-Time Prediction of Segmentation Quality 分割质量的实时预测 |
|
67.Recurrent Neural Networks for Aortic Image Sequence Segmentation with Sparse Annotations 具有稀疏注释的主动脉图像序列分割的经常性神经网络 |
|
68.Deep Nested Level Sets: Fully Automated Segmentation of Cardiac MR Images in Patients with Pulmonary Hypertension 深度嵌套水平集:肺动脉高压患者心脏MR图像全自动分割 |
|
69.Atrial Fibrosis Quantification Based on Maximum Likelihood Estimator of Multivariate Images 基于多变量图像的最大似然估计的心房纤维化定量 |
|
70.Left Ventricle Segmentation via Optical-Flow-Net from Short-Axis Cine MRI: Preserving the Temporal Coherence of Cardiac Motion 通过来自短轴调温的光学流动的左心室分割:保持心动的时间相干性 |
|
71.VoxelAtlasGAN: 3D Left Ventricle Segmentation on Echocardiography with Atlas Guided Generation and Voxel-to-Voxel Discrimination VoxelatlasgaN:3D左心室分割对超声心动图的左心室分割,地图集引导生成和体素到体素歧视 |
|
72.Domain and Geometry Agnostic CNNs for Left Atrium Segmentation in 3D Ultrasound 三维超声中左心中分割的域和几何不可止结的CNN |
Image Segmentation Methods: Chest, Lung and Spine Segmentation(图像分割方法:胸,肺和脊柱分割) | 概要 |
---|---|
73.Densely Deep Supervised Networks with Threshold Loss for Cancer Detection in Automated Breast Ultrasound 具有自动乳房超声中癌症检测的阈值损失密集的深度监督网络 |
|
74.Btrfly Net: Vertebrae Labelling with Energy-Based Adversarial Learning of Local Spine Prior Btrfly网:椎骨标记与局部脊柱的基于能量的对抗性学习 |
|
75.AtlasNet: Multi-atlas Non-linear Deep Networks for Medical Image Segmentation Atlasnet:Multi-atlas非线性深度网络用于医学图像分割 |
|
76.CFCM: Segmentation via Coarse to Fine Context Memory CFCM:通过粗糙到精细的上下文存储器分段 |
Image Segmentation Methods: Other Segmentation Applications(图像分割方法:其他分割应用) | 概要 |
---|---|
77.Pyramid-Based Fully Convolutional Networks for Cell Segmentation 基于金字塔的细胞分割的完全卷积网络 |
|
78.Automated Object Tracing for Biomedical Image Segmentation Using a Deep Convolutional Neural Network 使用深卷积神经网络自动化生物医学图像分割的对象跟踪 |
|
79.RBC Semantic Segmentation for Sickle Cell Disease Based on Deformable U-Net 基于可变形U形网的镰状细胞疾病的RBC语义分割 |
|
80.Accurate Detection of Inner Ears in Head CTs Using a Deep Volume-to-Volume Regression Network with False Positive Suppression and a Shape-Based Constraint 使用具有误施加的深度抑制和基于形状的约束,精确地检测头部CTS中的内耳。 |
|
81.Automatic Teeth Segmentation in Panoramic X-Ray Images Using a Coupled Shape Model in Combination with a Neural Network 使用耦合形状模型与神经网络组合的全景X射线图像中的自动齿分割 |
|
82.Craniomaxillofacial Bony Structures Segmentation from MRI with Deep-Supervision Adversarial Learning 来自MRI的Craniomaxillofacial Bony结构与深度监督对抗性学习的分割 |
|
83.Automatic Skin Lesion Segmentation on Dermoscopic Images by the Means of Superpixel Merging 通过超棒融合方法自动皮肤病患者对皮肤图像的分割 |
|
84.Star Shape Prior in Fully Convolutional Networks for Skin Lesion Segmentation 在完全卷积网络中为皮肤病变细分之前的星形形状 |
|
85.Fast Vessel Segmentation and Tracking in Ultra High-Frequency Ultrasound Images 超高频超声图像中快速血管分割和跟踪 |
|
86.Deep Reinforcement Learning for Vessel Centerline Tracing in Multi-modality 3D Volumes 多种式3D卷中船舶中心线跟踪的深增强学习 |