逻辑回归
优点
缺点
逻辑回归需要预先处理缺失值和异常值【可参考task3特征工程】;
不能用Logistic回归去解决非线性问题,因为Logistic的决策面是线性的;
对多重共线性数据较为敏感,且很难处理数据不平衡的问题;
准确率并不是很高,因为形式非常简单,很难去拟合数据的真实分布;
决策树模型
集成模型集成方法(ensemble method)
集成模型可按照数据使用的规则和模型组合的规则来分为提升(boosting)和打包(bagging),提升使用全体数据,对错误率高的数据不断提升其权重,主要作用是减少偏差。而bagging使用数据抽样的方法,最后各模型进行投票,其主要特点是减少方差。
通过组合多个学习器来完成学习任务,通过集成方法,可以将多个弱学习器组合成一个强分类器,因此集成学习的泛化能力一般比单一分类器要好。
集成方法主要包括Bagging和Boosting,Bagging和Boosting都是将已有的分类或回归算法通过一定方式组合起来,形成一个更加强大的分类。两种方法都是把若干个分类器整合为一个分类器的方法,只是整合的方式不一样,最终得到不一样的效果。常见的基于Baggin思想的集成模型有:随机森林、基于Boosting思想的集成模型有:Adaboost、GBDT、XgBoost、LightGBM等。
Baggin和Boosting的区别总结如下:
先使用当前对模型影响最大的参数进行调优,达到当前参数下的模型最优化,再使用对模型影响次之的参数进行调优,如此下去,直到所有的参数调整完毕。
这个方法的缺点就是可能会调到局部最优而不是全局最优,但是只需要一步一步的进行参数最优化调试即可,容易理解。
需要注意的是在树模型中参数调整的顺序,也就是各个参数对模型的影响程度,这里列举一下日常调参过程中常用的参数和调参顺序:
from sklearn.model_selection import cross_val_score
# 调objective
best_obj = dict()
for obj in objective:
model = LGBMRegressor(objective=obj)
"""预测并计算roc的相关指标"""
score = cross_val_score(model, X_train, y_train, cv=5, scoring='roc_auc').mean()
best_obj[obj] = score
# num_leaves
best_leaves = dict()
for leaves in num_leaves:
model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0], num_leaves=leaves)
"""预测并计算roc的相关指标"""
score = cross_val_score(model, X_train, y_train, cv=5, scoring='roc_auc').mean()
best_leaves[leaves] = score
# max_depth
best_depth = dict()
for depth in max_depth:
model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0],
num_leaves=min(best_leaves.items(), key=lambda x:x[1])[0],
max_depth=depth)
"""预测并计算roc的相关指标"""
score = cross_val_score(model, X_train, y_train, cv=5, scoring='roc_auc').mean()
best_depth[depth] = score
"""
可依次将模型的参数通过上面的方式进行调整优化,并且通过可视化观察在每一个最优参数下模型的得分情况
"""
可依次将模型的参数通过上面的方式进行调整优化,并且通过可视化观察在每一个最优参数下模型的得分情况
sklearn 提供GridSearchCV用于进行网格搜索,只需要把模型的参数输进去,就能给出最优化的结果和参数。相比起贪心调参,网格搜索的结果会更优,但是网格搜索只适合于小数据集,一旦数据的量级上去了,很难得出结果。
同样以Lightgbm算法为例,进行网格搜索调参:
"""通过网格搜索确定最优参数"""
from sklearn.model_selection import GridSearchCV
def get_best_cv_params(learning_rate=0.1, n_estimators=581, num_leaves=31, max_depth=-1, bagging_fraction=1.0,
feature_fraction=1.0, bagging_freq=0, min_data_in_leaf=20, min_child_weight=0.001,
min_split_gain=0, reg_lambda=0, reg_alpha=0, param_grid=None):
# 设置5折交叉验证
cv_fold = StratifiedKFold(n_splits=5, random_state=0, shuffle=True, )
model_lgb = lgb.LGBMClassifier(learning_rate=learning_rate,
n_estimators=n_estimators,
num_leaves=num_leaves,
max_depth=max_depth,
bagging_fraction=bagging_fraction,
feature_fraction=feature_fraction,
bagging_freq=bagging_freq,
min_data_in_leaf=min_data_in_leaf,
min_child_weight=min_child_weight,
min_split_gain=min_split_gain,
reg_lambda=reg_lambda,
reg_alpha=reg_alpha,
n_jobs= 8
)
grid_search = GridSearchCV(estimator=model_lgb,
cv=cv_fold,
param_grid=param_grid,
scoring='roc_auc'
)
grid_search.fit(X_train, y_train)
print('模型当前最优参数为:{}'.format(grid_search.best_params_))
print('模型当前最优得分为:{}'.format(grid_search.best_score_))
"""以下代码未运行,耗时较长,请谨慎运行,且每一步的最优参数需要在下一步进行手动更新,请注意"""
"""
需要注意一下的是,除了获取上面的获取num_boost_round时候用的是原生的lightgbm(因为要用自带的cv)
下面配合GridSearchCV时必须使用sklearn接口的lightgbm。
"""
"""设置n_estimators 为581,调整num_leaves和max_depth,这里选择先粗调再细调"""
lgb_params = {
'num_leaves': range(10, 80, 5), 'max_depth': range(3,10,2)}
get_best_cv_params(learning_rate=0.1, n_estimators=581, num_leaves=None, max_depth=None, min_data_in_leaf=20,
min_child_weight=0.001,bagging_fraction=1.0, feature_fraction=1.0, bagging_freq=0,
min_split_gain=0, reg_lambda=0, reg_alpha=0, param_grid=lgb_params)
"""num_leaves为30,max_depth为7,进一步细调num_leaves和max_depth"""
lgb_params = {
'num_leaves': range(25, 35, 1), 'max_depth': range(5,9,1)}
get_best_cv_params(learning_rate=0.1, n_estimators=85, num_leaves=None, max_depth=None, min_data_in_leaf=20,
min_child_weight=0.001,bagging_fraction=1.0, feature_fraction=1.0, bagging_freq=0,
min_split_gain=0, reg_lambda=0, reg_alpha=0, param_grid=lgb_params)
"""
确定min_data_in_leaf为45,min_child_weight为0.001 ,下面进行bagging_fraction、feature_fraction和bagging_freq的调参
"""
lgb_params = {
'bagging_fraction': [i/10 for i in range(5,10,1)],
'feature_fraction': [i/10 for i in range(5,10,1)],
'bagging_freq': range(0,81,10)
}
get_best_cv_params(learning_rate=0.1, n_estimators=85, num_leaves=29, max_depth=7, min_data_in_leaf=45,
min_child_weight=0.001,bagging_fraction=None, feature_fraction=None, bagging_freq=None,
min_split_gain=0, reg_lambda=0, reg_alpha=0, param_grid=lgb_params)
"""
确定bagging_fraction为0.4、feature_fraction为0.6、bagging_freq为 ,下面进行reg_lambda、reg_alpha的调参
"""
lgb_params = {
'reg_lambda': [0,0.001,0.01,0.03,0.08,0.3,0.5], 'reg_alpha': [0,0.001,0.01,0.03,0.08,0.3,0.5]}
get_best_cv_params(learning_rate=0.1, n_estimators=85, num_leaves=29, max_depth=7, min_data_in_leaf=45,
min_child_weight=0.001,bagging_fraction=0.9, feature_fraction=0.9, bagging_freq=40,
min_split_gain=0, reg_lambda=None, reg_alpha=None, param_grid=lgb_params)
"""
确定reg_lambda、reg_alpha都为0,下面进行min_split_gain的调参
"""
lgb_params = {
'min_split_gain': [i/10 for i in range(0,11,1)]}
get_best_cv_params(learning_rate=0.1, n_estimators=85, num_leaves=29, max_depth=7, min_data_in_leaf=45,
min_child_weight=0.001,bagging_fraction=0.9, feature_fraction=0.9, bagging_freq=40,
min_split_gain=None, reg_lambda=0, reg_alpha=0, param_grid=lgb_params)
"""
参数确定好了以后,我们设置一个比较小的learning_rate 0.005,来确定最终的num_boost_round
"""
# 设置5折交叉验证
# cv_fold = StratifiedKFold(n_splits=5, random_state=0, shuffle=True, )
final_params = {
'boosting_type': 'gbdt',
'learning_rate': 0.01,
'num_leaves': 29,
'max_depth': 7,
'min_data_in_leaf':45,
'min_child_weight':0.001,
'bagging_fraction': 0.9,
'feature_fraction': 0.9,
'bagging_freq': 40,
'min_split_gain': 0,
'reg_lambda':0,
'reg_alpha':0,
'nthread': 6
}
cv_result = lgb.cv(train_set=lgb_train,
early_stopping_rounds=20,
num_boost_round=5000,
nfold=5,
stratified=True,
shuffle=True,
params=final_params,
metrics='auc',
seed=0,
)
print('迭代次数{}'.format(len(cv_result['auc-mean'])))
print('交叉验证的AUC为{}'.format(max(cv_result['auc-mean'])))
在实际调整过程中,可先设置一个较大的学习率(上面的例子中0.1),通过Lgb原生的cv函数进行树个数的确定,之后再通过上面的实例代码进行参数的调整优化。
最后针对最优的参数设置一个较小的学习率(例如0.05),同样通过cv函数确定树的个数,确定最终的参数。
需要注意的是,针对大数据集,上面每一层参数的调整都需要耗费较长时间,
在使用之前需要先安装包bayesian-optimization,运行如下命令即可:
pip install bayesian-optimization
贝叶斯调参的主要思想是:给定优化的目标函数(广义的函数,只需指定输入和输出即可,无需知道内部结构以及数学性质),通过不断地添加样本点来更新目标函数的后验分布(高斯过程,直到后验分布基本贴合于真实分布)。简单的说,就是考虑了上一次参数的信息,从而更好的调整当前的参数。
贝叶斯调参的步骤如下:
from sklearn.model_selection import cross_val_score
"""定义优化函数"""
def rf_cv_lgb(num_leaves, max_depth, bagging_fraction, feature_fraction, bagging_freq, min_data_in_leaf,
min_child_weight, min_split_gain, reg_lambda, reg_alpha):
# 建立模型
model_lgb = lgb.LGBMClassifier(boosting_type='gbdt', bjective='binary', metric='auc',
learning_rate=0.1, n_estimators=5000,
num_leaves=int(num_leaves), max_depth=int(max_depth),
bagging_fraction=round(bagging_fraction, 2), feature_fraction=round(feature_fraction, 2),
bagging_freq=int(bagging_freq), min_data_in_leaf=int(min_data_in_leaf),
min_child_weight=min_child_weight, min_split_gain=min_split_gain,
reg_lambda=reg_lambda, reg_alpha=reg_alpha,
n_jobs= 8
)
val = cross_val_score(model_lgb, X_train_split, y_train_split, cv=5, scoring='roc_auc').mean()
return val
from bayes_opt import BayesianOptimization
"""定义优化参数"""
bayes_lgb = BayesianOptimization(
rf_cv_lgb,
{
'num_leaves':(10, 200),
'max_depth':(3, 20),
'bagging_fraction':(0.5, 1.0),
'feature_fraction':(0.5, 1.0),
'bagging_freq':(0, 100),
'min_data_in_leaf':(10,100),
'min_child_weight':(0, 10),
'min_split_gain':(0.0, 1.0),
'reg_alpha':(0.0, 10),
'reg_lambda':(0.0, 10),
}
)
"""开始优化"""
bayes_lgb.maximize(n_iter=10)
| iter | target | baggin... | baggin... | featur... | max_depth | min_ch... | min_da... | min_sp... | num_le... | reg_alpha | reg_la... |
-------------------------------------------------------------------------------------------------------------------------------------------------
| [0m 1 [0m | [0m 0.7263 [0m | [0m 0.7196 [0m | [0m 80.73 [0m | [0m 0.7988 [0m | [0m 19.17 [0m | [0m 5.751 [0m | [0m 40.71 [0m | [0m 0.9548 [0m | [0m 176.2 [0m | [0m 2.939 [0m | [0m 7.212 [0m |
| [95m 2 [0m | [95m 0.7279 [0m | [95m 0.8997 [0m | [95m 74.72 [0m | [95m 0.5904 [0m | [95m 7.259 [0m | [95m 6.175 [0m | [95m 92.03 [0m | [95m 0.4027 [0m | [95m 51.65 [0m | [95m 6.404 [0m | [95m 4.781 [0m |
| [0m 3 [0m | [0m 0.7207 [0m | [0m 0.5133 [0m | [0m 16.53 [0m | [0m 0.9536 [0m | [0m 4.974 [0m | [0m 2.37 [0m | [0m 98.08 [0m | [0m 0.7909 [0m | [0m 52.12 [0m | [0m 4.443 [0m | [0m 4.429 [0m |
| [0m 4 [0m | [0m 0.7276 [0m | [0m 0.6265 [0m | [0m 53.12 [0m | [0m 0.7307 [0m | [0m 10.67 [0m | [0m 1.824 [0m | [0m 18.98 [0m | [0m 0.954 [0m | [0m 60.47 [0m | [0m 6.963 [0m | [0m 1.999 [0m |
| [0m 5 [0m | [0m 0.6963 [0m | [0m 0.6509 [0m | [0m 11.58 [0m | [0m 0.5386 [0m | [0m 11.21 [0m | [0m 7.85 [0m | [0m 11.4 [0m | [0m 0.4269 [0m | [0m 153.0 [0m | [0m 0.5227 [0m | [0m 2.257 [0m |
| [0m 6 [0m | [0m 0.7276 [0m | [0m 0.6241 [0m | [0m 49.76 [0m | [0m 0.6057 [0m | [0m 10.34 [0m | [0m 1.718 [0m | [0m 22.43 [0m | [0m 0.8294 [0m | [0m 55.68 [0m | [0m 6.759 [0m | [0m 2.6 [0m |
| [95m 7 [0m | [95m 0.7283 [0m | [95m 0.9815 [0m | [95m 96.15 [0m | [95m 0.6961 [0m | [95m 19.45 [0m | [95m 1.627 [0m | [95m 37.7 [0m | [95m 0.4185 [0m | [95m 14.22 [0m | [95m 7.057 [0m | [95m 9.924 [0m |
| [0m 8 [0m | [0m 0.7278 [0m | [0m 0.7139 [0m | [0m 96.83 [0m | [0m 0.5063 [0m | [0m 3.941 [0m | [0m 1.469 [0m | [0m 97.28 [0m | [0m 0.07553 [0m | [0m 196.9 [0m | [0m 7.988 [0m | [0m 2.159 [0m |
| [0m 9 [0m | [0m 0.7195 [0m | [0m 0.5352 [0m | [0m 98.72 [0m | [0m 0.9699 [0m | [0m 4.445 [0m | [0m 1.767 [0m | [0m 13.91 [0m | [0m 0.1647 [0m | [0m 191.5 [0m | [0m 4.003 [0m | [0m 2.027 [0m |
| [0m 10 [0m | [0m 0.7281 [0m | [0m 0.7281 [0m | [0m 73.63 [0m | [0m 0.5598 [0m | [0m 19.29 [0m | [0m 0.5344 [0m | [0m 99.66 [0m | [0m 0.933 [0m | [0m 101.4 [0m | [0m 8.836 [0m | [0m 0.9222 [0m |
| [0m 11 [0m | [0m 0.7279 [0m | [0m 0.8213 [0m | [0m 0.05856 [0m | [0m 0.7626 [0m | [0m 17.49 [0m | [0m 8.447 [0m | [0m 10.71 [0m | [0m 0.3252 [0m | [0m 13.64 [0m | [0m 9.319 [0m | [0m 0.4747 [0m |
| [0m 12 [0m | [0m 0.7281 [0m | [0m 0.8372 [0m | [0m 95.71 [0m | [0m 0.9598 [0m | [0m 10.32 [0m | [0m 8.394 [0m | [0m 15.23 [0m | [0m 0.4909 [0m | [0m 94.48 [0m | [0m 9.486 [0m | [0m 9.044 [0m |
| [0m 13 [0m | [0m 0.6993 [0m | [0m 0.5183 [0m | [0m 99.02 [0m | [0m 0.542 [0m | [0m 15.5 [0m | [0m 8.35 [0m | [0m 38.15 [0m | [0m 0.4079 [0m | [0m 58.01 [0m | [0m 0.2668 [0m | [0m 1.652 [0m |
| [0m 14 [0m | [0m 0.7267 [0m | [0m 0.7933 [0m | [0m 4.459 [0m | [0m 0.79 [0m | [0m 7.557 [0m | [0m 2.43 [0m | [0m 27.91 [0m | [0m 0.8725 [0m | [0m 28.32 [0m | [0m 9.967 [0m | [0m 9.885 [0m |
| [0m 15 [0m | [0m 0.6979 [0m | [0m 0.9419 [0m | [0m 1.22 [0m | [0m 0.835 [0m | [0m 11.56 [0m | [0m 9.962 [0m | [0m 93.79 [0m | [0m 0.018 [0m | [0m 197.6 [0m | [0m 9.711 [0m | [0m 3.78 [0m |
=================================================================================================================================================
"""显示优化结果"""
bayes_lgb.max
{'target': 0.7282530196283977,
'params': {'bagging_fraction': 0.9815471914843896,
'bagging_freq': 96.14757648686668,
'feature_fraction': 0.6961281791730929,
'max_depth': 19.45450235568963,
'min_child_weight': 1.6266132496156782,
'min_data_in_leaf': 37.697878831472295,
'min_split_gain': 0.4184947943942168,
'num_leaves': 14.221122487200399,
'reg_alpha': 7.056502173310882,
'reg_lambda': 9.924023764203156}}
参数优化完成后,我们可以根据优化后的参数建立新的模型,降低学习率并寻找最优模型迭代次数
"""调整一个较小的学习率,并通过cv函数确定当前最优的迭代次数"""
base_params_lgb = {
'boosting_type': 'gbdt',
'objective': 'binary',
'metric': 'auc',
'learning_rate': 0.01,
'num_leaves': 14,
'max_depth': 19,
'min_data_in_leaf': 37,
'min_child_weight':1.6,
'bagging_fraction': 0.98,
'feature_fraction': 0.69,
'bagging_freq': 96,
'reg_lambda': 9,
'reg_alpha': 7,
'min_split_gain': 0.4,
'nthread': 8,
'seed': 2020,
'silent': True,
'verbose': -1,
}
cv_result_lgb = lgb.cv(
train_set=train_matrix,
early_stopping_rounds=1000,
num_boost_round=20000,
nfold=5,
stratified=True,
shuffle=True,
params=base_params_lgb,
metrics='auc',
seed=0
)
print('迭代次数{}'.format(len(cv_result_lgb['auc-mean'])))
print('最终模型的AUC为{}'.format(max(cv_result_lgb['auc-mean'])))
迭代次数14269
最终模型的AUC为0.7315032037635779
对于模型来说,其在训练集上面的误差我们称之为训练误差或者经验误差,而在测试集上的误差称之为测试误差。
对于我们来说,我们更关心的是模型对于新样本的学习能力,即我们希望通过对已有样本的学习,尽可能的将所有潜在样本的普遍规律学到手,而如果模型对训练样本学的太好,则有可能把训练样本自身所具有的一些特点当做所有潜在样本的普遍特点,这时候我们就会出现过拟合的问题。
因此我们通常将已有的数据集划分为训练集和测试集两部分,其中训练集用来训练模型,而测试集则是用来评估模型对于新样本的判别能力。
对于数据集的划分,我们通常要保证满足以下两个条件:
对于数据集的划分有三种方法:留出法,交叉验证法和自助法,下面挨个介绍:
①留出法
留出法是直接将数据集D划分为两个互斥的集合,其中一个集合作为训练集S,另一个作为测试集T。需要注意的是在划分的时候要尽可能保证数据分布的一致性,即避免因数据划分过程引入额外的偏差而对最终结果产生影响。为了保证数据分布的一致性,通常我们采用分层采样的方式来对数据进行采样。
Tips: 通常,会将数据集D中大约2/3~4/5的样本作为训练集,其余的作为测试集。
②交叉验证法
k折交叉验证通常将数据集D分为k份,其中k-1份作为训练集,剩余的一份作为测试集,这样就可以获得k组训练/测试集,可以进行k次训练与测试,最终返回的是k个测试结果的均值。交叉验证中数据集的划分依然是依据分层采样的方式来进行。
对于交叉验证法,其k值的选取往往决定了评估结果的稳定性和保真性,通常k值选取10。
当k=1的时候,我们称之为留一法
③自助法
我们每次从数据集D中取一个样本作为训练集中的元素,然后把该样本放回,重复该行为m次,这样我们就可以得到大小为m的训练集,在这里面有的样本重复出现,有的样本则没有出现过,我们把那些没有出现过的样本作为测试集。
进行这样采样的原因是因为在D中约有36.8%的数据没有在训练集中出现过。留出法与交叉验证法都是使用分层采样的方式进行数据采样与划分,而自助法则是使用有放回重复采样的方式进行数据采样
数据集划分总结
模型评价标准
对于本次比赛,我们选用auc作为模型评价标准,类似的评价标准还有ks、f1-score等,具体介绍与实现大家可以回顾下task1中的内容。
一起来看一下auc到底是什么?
在逻辑回归里面,对于正负例的界定,通常会设一个阈值,大于阈值的为正类,小于阈值为负类。如果我们减小这个阀值,更多的样本会被识别为正类,提高正类的识别率,但同时也会使得更多的负类被错误识别为正类。为了直观表示这一现象,引入ROC。
根据分类结果计算得到ROC空间中相应的点,连接这些点就形成ROC curve,横坐标为False Positive Rate(FPR:假正率),纵坐标为True Positive Rate(TPR:真正率)。 一般情况下,这个曲线都应该处于(0,0)和(1,1)连线的上方,如图:
ROC曲线中的四个点:
总之:ROC曲线越接近左上角,该分类器的性能越好,其泛化性能就越好。而且一般来说,如果ROC是光滑的,那么基本可以判断没有太大的overfitting。
但是对于两个模型,我们如何判断哪个模型的泛化性能更优呢?这里我们有主要以下两种方法:
如果模型A的ROC曲线完全包住了模型B的ROC曲线,那么我们就认为模型A要优于模型B;
如果两条曲线有交叉的话,我们就通过比较ROC与X,Y轴所围得曲线的面积来判断,面积越大,模型的性能就越优,这个面积我们称之为AUC(area under ROC curve)
代码示例
导入相关关和相关设置
import pandas as pd
import numpy as np
import warnings
import os
import seaborn as sns
import matplotlib.pyplot as plt
"""
sns 相关设置
@return:
"""
# 声明使用 Seaborn 样式
sns.set()
# 有五种seaborn的绘图风格,它们分别是:darkgrid, whitegrid, dark, white, ticks。默认的主题是darkgrid。
sns.set_style("whitegrid")
# 有四个预置的环境,按大小从小到大排列分别为:paper, notebook, talk, poster。其中,notebook是默认的。
sns.set_context('talk')
# 中文字体设置-黑体
plt.rcParams['font.sans-serif'] = ['SimHei']
# 解决保存图像是负号'-'显示为方块的问题
plt.rcParams['axes.unicode_minus'] = False
# 解决Seaborn中文显示问题并调整字体大小
sns.set(font='SimHei')
读取数据
reduce_mem_usage 函数通过调整数据类型,帮助我们减少数据在内存中占用的空间
def reduce_mem_usage(df):
start_mem = df.memory_usage().sum()
print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
for col in df.columns:
col_type = df[col].dtype
if col_type != object:
c_min = df[col].min()
c_max = df[col].max()
if str(col_type)[:3] == 'int':
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
df[col] = df[col].astype(np.int8)
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
df[col] = df[col].astype(np.int16)
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
df[col] = df[col].astype(np.int32)
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
df[col] = df[col].astype(np.int64)
else:
if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
df[col] = df[col].astype(np.float16)
elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
df[col] = df[col].astype(np.float32)
else:
df[col] = df[col].astype(np.float64)
else:
df[col] = df[col].astype('category')
end_mem = df.memory_usage().sum()
print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
return df
# 读取数据
data = pd.read_csv('dataset/data_for_model.csv')
data = reduce_mem_usage(data)
Memory usage of dataframe is 928000128.00 MB
Memory usage after optimization is: 165006456.00 MB
Decreased by 82.2%
以上学习资料,均来自DataWhale