接着我们联立AX=B,A=LU可得到LUX=B;到这里我们假设UX=Y,则原式又转变为LY=B。到这里我们需要逆向思维进行求解,我们采用前向替代法解的Y,然后对UX=Y采用回代法也就是求解上三角线性方程组的方法进行求解,最终解的X。
回代法在之前blog写过了,这里不再赘述。
前向替代法其实就是将回代法反过来用。
【问题描述】为求解一个线性方程组,首先采用偏序选主元策略的三角分解法构造矩阵L,U和P,再用前向替换法对方程组LY=PB求解Y,最后用回代法对方程组UX=Y求解X。
【输入形式】在屏幕上依次输入方阵阶数n,系数矩阵A和常数矩阵B。
【输出形式】先输出LU分解结果,再输出方程解。如果系数矩阵A是奇异矩阵,输出: error
【样例1输入】
4
1 2 4 1
2 8 6 4
3 10 8 6
4 12 10 6
21
52
79
82
【样例1输出】
1 0 0 0
0.5 1 0 0
0.25 -0.5 1 0
0.75 0.5 0 1
4 12 10 6
0 2 1 1
0 0 2 0
0 0 0 3
1
2
3
4
【样例1说明】
输入:第1行为方阵阶数4,第2行至5行为系数矩阵A,第6行至9行为常数矩阵B。
输出:第1至第4行输出矩阵L,第5至第8行输出矩阵U,最后4行依次输出方程解:x1, x2, x3, x4。
【评分标准】根据输入得到的输出准确
ACcode:
/*
* @Author: csc
* @Date: 2021-04-02 21:12:17
* @LastEditTime: 2021-04-09 12:45:20
* @LastEditors: Please set LastEditors
* @Description: In User Settings Edit
* @FilePath: \code_formal\course\cal\sanjiaofenjie.cpp
*/
#include <iostream>
#include <vector>
#include <iomanip>
#include <algorithm>
#define pr printf
#define sc scanf
#define sf(n) scanf("%d", &n)
#define sff(n1, n2) scanf("%d %d", &n1, &n2)
#define sfff(n1, n2, n3) scanf("%d %d %d", &n1, &n2, &n3)
#define sl(n) scanf("%lld", &n)
#define sll(n1, n2) scanf("%lld %lld", &n1, &n2)
#define slll(n1, n2, n3) scanf("%lld %lld %lld", &n1, &n2, &n3)
#define for0(i, n) for (i = 0; i < n; i++)
#define for1n(i, n) for (i = 1; i <= n; i++)
#define foran(i, a, n) for (i = a; i <= n; i++)
#define forna(i, a, n) for (i = n; i >= a; i--)
#define pb push_back
#define fi first
#define se second
#define int long long
#define endl '\n'
#define mem(ara, n) memset(ara, n, sizeof(ara))
#define memb(ara) memset(ara, false, sizeof(ara))
#define all(x) (x).begin(), (x).end()
#define sq(x) ((x) * (x))
#define sz(x) x.size()
const int N = 2e5 + 100;
const int mod = 1e9 + 7;
namespace fastIO
{
inline void input(int &res)
{
char c = getchar();
res = 0;
int f = 1;
while (!isdigit(c))
{
f ^= c == '-';
c = getchar();
}
while (isdigit(c))
{
res = (res << 3) + (res << 1) + (c ^ 48);
c = getchar();
}
res = f ? res : -res;
}
inline int qpow(int a, int b)
{
int ans = 1, base = a;
while (b)
{
if (b & 1)
ans = (ans * base % mod + mod) % mod;
base = (base * base % mod + mod) % mod;
b >>= 1;
}
return ans;
}
int fact(int n)
{
int res = 1;
for (int i = 1; i <= n; i++)
{
res = res * 1ll * i % mod;
}
return res;
}
int C(int n, int k)
{
return fact(n) * 1ll * qpow(fact(k), mod - 2) % mod * 1ll * qpow(fact(n - k), mod - 2) % mod;
}
}
using namespace fastIO;
using namespace std;
int n, i, j;
signed main()
{
int _ = 1;
//input(_);
while (_--)
{
input(n);
vector<vector<double>> v(n + 1, vector<double>(n + 1));
for1n(i, n) for1n(j, n) cin >> v[i][j];
vector<double> b(n + 1);
for1n(i, n) cin >> b[i];
// decompose c 为转置矩阵 v为结果
vector<vector<double>> c(n + 1, vector<double>(n + 1));
for1n(i, n) c[i][i] = 1;
for1n(i, n)
{
int mai = i;
foran(j, i, n) if (abs(v[j][i]) > abs(v[mai][i]))
mai = j;
if (v[mai][i] == 0) // eps is enough samll
{
cout << "error" << endl;
return 0;
}
vector<double> t = v[mai];
v[mai] = v[i];
v[i] = t;
t = c[mai];
c[mai] = c[i];
c[i] = t;
for (j = i + 1; j <= n; j++)
{
v[j][i] = v[j][i] / v[i][i];
for (int k = i + 1; k <= n; k++)
v[j][k] = v[j][k] - v[i][k] * v[j][i];
}
}
// solve
vector<vector<double>> a = v;
auto dot = [&](vector<vector<double>> c, vector<double> b) -> vector<double> {
int m = sz(b) - 1;
vector<double> d(n + 1);
int k, g;
for1n(k, m)
for1n(g, m)
d[k] += c[k][g] * b[g];
return d;
};
b = dot(c, b);
vector<double> x(n + 1, 1);
for1n(i, n)
{
double m = 0.0;
foran(j, 1, i - 1)
m += x[j] * a[i][j];
x[i] = b[i] - m;
}
vector<double> ans(n + 1, 1);
int k = n;
while (k > 0)
{
double m = 0.0;
foran(j, k + 1, n)
m = m + ans[j] * a[k][j];
ans[k] = (x[k] - m) / a[k][k];
k--;
}
// display
for1n(i, n)
{
for (j = 1; j <= n; ++j)
if (j < i)
cout << v[i][j] << " ";
else if (j == i)
cout << 1 << " ";
else
cout << 0 << " ";
cout << endl;
}
for1n(i, n)
{
for (j = 1; j <= n; ++j)
if (j < i)
cout << 0 << " ";
else
cout << v[i][j] << " ";
cout << endl;
}
for1n(i, n) cout << ans[i] << endl;
}
return 0;
}