光伏逆变器电感元件及其技术趋势

        世界范围的能源短缺、油价的持续高位上涨,已经成为全球经济可持续发展的重要制约因素之一。在大力开发可再生能源的浪潮中,太阳能发电技术因其优越的环保性、大容量、规模化等特点,正越来越受到广泛的重视。光伏发电系统中,为了最大限度地把太阳能电池发出的电力高效注入电网,PV逆变器的变换效率是近年来业界最关注的技术课题之一。

         山克新能源科技(深圳)有限公司发现,随着功率半导体器件、大规模数字控制等技术的突破,作为储能滤波元件的光伏功率电感,正越来越成为影响系统转换效率的重要瓶颈。为了提高系统效率,降低电感损耗,不得不大量消耗铜材和昂贵的高性能磁性材料,成为整个逆变器中最昂贵的元件之一。

         针对上述问题,本文将根据各种PV逆变器的基本电路架构和工作原理,分析其相配套使用的电感元件的性能要求和目前广泛采用的电感元件的优缺点,结合现有磁性材料的最新成果,提出用混合磁路及磁集成技术等电感设计手法,来根本性解决这一问题的方法和途径。

一、光伏逆变器的分类

        并网式PV逆变器因其实际应用的功率等级的不同,其电路架构及其工作机理也不相同。根据光伏逆变器的功率等级,大体可分成四个大类:微逆变器、住宅型光伏逆变器、商用中功率逆变器、集中式发电站逆变器。

二、微逆变器及其核心磁元件

    太阳能组件因安装的位置、乌云状况、周围树叶等阴影的覆盖等因素的影响,各个组件产生的电力会出现不同程度的离散。如果把它们都串并联在一起,就会出现犹如新旧电池组合使用的不良效果。一般电池面积的2-3%被阴影覆盖时,总的发电量常常会出现高达20%的下降,严重影响了整个系统的发电效能。为此,微逆变器专门对单一的电池组件进行独立并网发电,可以最大限度地避免这一问题,此方案一经问世便广受青睐。但一个家庭电力,往往需要十几个或更多这样的独立逆变单元,因此该逆变器能否实现高效率低成本化就成为影响该系统广泛应用的重要制约因素。

         Fig1、2所示微逆变器是比较典型的两种并网发电拓扑。Fig1中首先采用两个交错式临界工作方式的升压反激式变压器,将其占空比按照正弦波半波规律,通过单级电路的电力的正弦化、隔离升压和MPPT(Maximum Power Point Tracker)控制滤波,然后再全桥半波工频换相滤波,高效地实现了低压直流的直接并网发电。这是目前最具有潜力的微逆变器工作方式之一。Fig2则是通过全桥隔离升压、滤波,再进行全桥逆变滤波并网的常规方式。这种方式的明显缺点就是需要较多的磁元件,且高频开关器件过多,成本和效率方面优势不足,且电路为了简化,无一例外地采用了硬开关驱动,这样隔离主变压器的漏感要非常小,一般不得不采用多层电路板扁平变压器结构,使得其寄生电容大,成本高,EMI也比较难处理。

你可能感兴趣的:(光伏逆变器电感元件及其技术趋势)