时间20210502
要是有帮助的话,记得点赞收藏加关注嗷!
作者:知道许多的橘子
实现:WRN28_04对CIFAR-100数据集的分类
测试集准确度:76%
实现框架pytorch
数据增强方法:Normalize+Fix等
训练次数:200
阶段学习率[0-200]:smooth_step(10,40,100,150,epoch_s)
优化器optimizer = torch.optim.SGD(model.parameters(),lr=smooth_step(10,40,100,150,epoch_s), momentum=0.9,weight_decay=1e-5)
如果感觉算力不够用了,或者心疼自己电脑了!
可以用我实验室的算力,试试呢!
害,谁叫我的算力都用不完呢!
支持所有框架!实际上框架都配置好了!
傻瓜式云计算!
Tesla v100 1卡,2卡,4卡,8卡
内存16-128G
cpu:8-24核
想要?加个微信:15615634293
欢迎打扰!
from __future__ import division
import os
import torch
import torch.nn as nn
import torchvision
from torchvision import datasets,transforms
import torch.utils.data as Data
import time
from torch.nn import functional as F
from math import floor, ceil
import math
import numpy as np
import sys
sys.path.append(r'/home/megstudio/workspace/')
from FMIX.fmix import sample_and_apply, sample_mask
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(device)
import random
from torch.autograd import Variable
num_epochs = 200
batch_size = 100
tbatch_size = 100
test_name = '/D_W28_04_BJGB3_BLN_S_C100'
class RandomErasing(object):
'''
Class that performs Random Erasing in Random Erasing Data Augmentation by Zhong et al.
-------------------------------------------------------------------------------------
probability: The probability that the operation will be performed.
sl: min erasing area
sh: max erasing area
r1: min aspect ratio
mean: erasing value
-------------------------------------------------------------------------------------
'''
def __init__(self, probability = 0.5, sl = 0.02, sh = 0.4, r1 = 0.3, mean=[0.4914, 0.4822, 0.4465]):
self.probability = probability
self.mean = mean
self.sl = sl
self.sh = sh
self.r1 = r1
def __call__(self, img):
if random.uniform(0, 1) > self.probability:
return img
for attempt in range(100):
area = img.size()[1] * img.size()[2]
target_area = random.uniform(self.sl, self.sh) * area
aspect_ratio = random.uniform(self.r1, 1/self.r1)
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w <= img.size()[2] and h <= img.size()[1]:
x1 = random.randint(0, img.size()[1] - h)
y1 = random.randint(0, img.size()[2] - w)
if img.size()[0] == 3:
img[0, x1:x1+h, y1:y1+w] = self.mean[0]
img[1, x1:x1+h, y1:y1+w] = self.mean[1]
img[2, x1:x1+h, y1:y1+w] = self.mean[2]
else:
img[0, x1:x1+h, y1:y1+w] = self.mean[0]
return img
return img
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
RandomErasing(probability = 0.5, sl = 0.02, sh = 0.4, r1 = 0.3, mean=[0.4914, 0.4822, 0.4465])])
test_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])
trainset = torchvision.datasets.CIFAR100(
root='/home/megstudio/dataset/dataset-2097/file-1251/CIFAR100',
train=True,
download=False,
transform=train_transform)
train_loader = Data.DataLoader(
dataset=trainset,
batch_size=batch_size,
shuffle=True,
num_workers=2)
testset = torchvision.datasets.CIFAR100(
root='/home/megstudio/dataset/dataset-2097/file-1251/CIFAR100',
train=False,
download=False,
transform=test_transform)
test_loader = Data.DataLoader(
dataset=testset,
batch_size=tbatch_size,
shuffle=False,
num_workers=2)
class BasicBlock(nn.Module):
def __init__(self, in_planes, out_planes, stride, dropRate=0.0):
super(BasicBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.relu1 = nn.ReLU(inplace=True)
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_planes)
self.relu2 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_planes, out_planes, kernel_size=3, stride=1,
padding=1, bias=False)
self.droprate = dropRate
self.equalInOut = (in_planes == out_planes)
self.convShortcut = (not self.equalInOut) and nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride,
padding=0, bias=False) or None
def forward(self, x):
if not self.equalInOut:
x = self.relu1(self.bn1(x))
else:
out = self.relu1(self.bn1(x))
out = self.relu2(self.bn2(self.conv1(out if self.equalInOut else x)))
if self.droprate > 0:
out = F.dropout(out, p=self.droprate, training=self.training)
out = self.conv2(out)
return torch.add(x if self.equalInOut else self.convShortcut(x), out)
class NetworkBlock(nn.Module):
def __init__(self, nb_layers, in_planes, out_planes, block, stride, dropRate=0.0):
super(NetworkBlock, self).__init__()
self.layer = self._make_layer(block, in_planes, out_planes, nb_layers, stride, dropRate)
def _make_layer(self, block, in_planes, out_planes, nb_layers, stride, dropRate):
layers = []
for i in range(nb_layers):
layers.append(block(i == 0 and in_planes or out_planes, out_planes, i == 0 and stride or 1, dropRate))
return nn.Sequential(*layers)
def forward(self, x):
return self.layer(x)
class WideResNet(nn.Module):
def __init__(self, depth, num_classes, widen_factor=1, dropRate=0.0, nc=1):
super(WideResNet, self).__init__()
nChannels = [16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor]
assert (depth - 4) % 6 == 0, 'depth should be 6n+4'
n = (depth - 4) // 6
block = BasicBlock
self.conv1 = nn.Conv2d(nc, nChannels[0], kernel_size=3, stride=1,
padding=1, bias=False)
self.block1 = NetworkBlock(n, nChannels[0], nChannels[1], block, 1, dropRate)
self.block2 = NetworkBlock(n, nChannels[1], nChannels[2], block, 2, dropRate)
self.block3 = NetworkBlock(n, nChannels[2], nChannels[3], block, 2, dropRate)
self.bn1 = nn.BatchNorm2d(nChannels[3])
self.relu = nn.ReLU(inplace=True)
self.fc = nn.Linear(nChannels[3], num_classes)
self.nChannels = nChannels[3]
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()
def forward(self, x):
out = self.conv1(x)
out = self.block1(out)
out = self.block2(out)
out = self.block3(out)
out = self.relu(self.bn1(out))
out = F.avg_pool2d(out, 7)
out = out.view(-1, self.nChannels)
return self.fc(out)
def wrn(**kwargs):
"""
Constructs a Wide Residual Networks.
"""
model = WideResNet(**kwargs)
return model
def smooth_step(a,b,c,d,x):
level_s=0.01
level_m=0.1
level_n=0.01
level_r=0.005
if x<=a:
return level_s
if a<x<=b:
return (((x-a)/(b-a))*(level_m-level_s)+level_s)
if b<x<=c:
return level_m
if c<x<=d:
return level_n
if d<x:
return level_r
def update_lr(optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def test(model,test_loader):
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs= model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
acc=100 * correct / total
print('Accuracy of the model on the test images: {} %'.format(acc))
return acc
def mkdir(path):
folder = os.path.exists(path)
if not folder:
os.makedirs(path)
print("--- new folder... ---")
print("--- OK ---")
else:
print("--- There is this folder! ---")
path = os.getcwd()
path = path+test_name
print(path)
mkdir(path)
try:
model = torch.load(path+'/model.pkl').to(device)
epoch_s = np.load(path+'/learning_rate.npy')
print(epoch_s)
train_loss = np.load(path+'/test_acc.npy').tolist()
test_acc = np.load(path+'/test_acc.npy').tolist()
print("--- There is a model in the folder... ---")
except:
print("--- Create a new model... ---")
epoch_s = 0
model = wrn(depth=28, num_classes=100, widen_factor=4, dropRate=0.4, nc=3).to(device)
train_loss=[]
test_acc=[]
if torch.cuda.device_count() > 1:
model = nn.DataParallel(model)
print(torch.cuda.device_count())
def saveModel(model,epoch,test_acc,train_loss):
torch.save(model, path+'/model.pkl')
epoch_save=np.array(epoch)
np.save(path+'/learning_rate.npy',epoch_save)
test_acc=np.array(test_acc)
np.save(path+'/test_acc.npy',test_acc)
train_loss=np.array(train_loss)
np.save(path+'/train_loss.npy',train_loss)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(),lr=smooth_step(10,40,100,150,epoch_s), momentum=0.9,weight_decay=1e-5)
total_step = len(train_loader)
for epoch in range(epoch_s, num_epochs):
in_epoch = time.time()
for i, (images, labels) in enumerate(train_loader):
images, index, lam = sample_and_apply(images, alpha=1, decay_power=3, shape=(32,32))
images = images.type(torch.FloatTensor)
shuffled_label = labels[index].to(device)
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
loss = lam*criterion(outputs, labels) + (1-lam)*criterion(outputs, shuffled_label)
optimizer.zero_grad()
loss.backward(retain_graph=False)
optimizer.step()
if (i + 1) % 100 == 0:
print("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}"
.format(epoch + 1, num_epochs, i + 1, total_step, loss.item()))
train_loss.append(loss.item())
acctemp = test(model, test_loader)
test_acc.append(acctemp)
curr_lr = smooth_step(10, 40, 100, 150, epoch)
update_lr(optimizer, curr_lr)
saveModel(model, epoch, test_acc, train_loss)
out_epoch = time.time()
print(f"use {(out_epoch-in_epoch)//60}min{(out_epoch-in_epoch)%60}s")
test(model, train_loader)
在这里插入代码片cuda
/home/megstudio/workspace/__20210502/_W28_04_BJGB3_BLN_S_C100
--- There is this folder! ---
--- Create a new model... ---
Epoch [1/200], Step [100/500] Loss: 4.5251
Epoch [1/200], Step [200/500] Loss: 4.5332
Epoch [1/200], Step [300/500] Loss: 4.4155
Epoch [1/200], Step [400/500] Loss: 4.4589
Epoch [1/200], Step [500/500] Loss: 4.4348
Accuracy of the model on the test images: 2.95 %
use 0.0min21.313775062561035s
Epoch [2/200], Step [100/500] Loss: 4.2417
Epoch [2/200], Step [200/500] Loss: 4.1760
Epoch [2/200], Step [300/500] Loss: 4.3673
Epoch [2/200], Step [400/500] Loss: 4.1980
Epoch [2/200], Step [500/500] Loss: 4.3332
Accuracy of the model on the test images: 8.77 %
use 0.0min20.538337469100952s
Epoch [3/200], Step [100/500] Loss: 4.1575
Epoch [3/200], Step [200/500] Loss: 3.9547
Epoch [3/200], Step [300/500] Loss: 4.3824
Epoch [3/200], Step [400/500] Loss: 4.2851
Epoch [3/200], Step [500/500] Loss: 4.3145
Accuracy of the model on the test images: 11.87 %
use 0.0min20.534307718276978s
Epoch [4/200], Step [100/500] Loss: 4.2549
Epoch [4/200], Step [200/500] Loss: 4.1143
Epoch [4/200], Step [300/500] Loss: 4.0363
Epoch [4/200], Step [400/500] Loss: 3.9180
Epoch [4/200], Step [500/500] Loss: 4.0309
Accuracy of the model on the test images: 13.54 %
use 0.0min20.53101944923401s
Epoch [5/200], Step [100/500] Loss: 4.3400
Epoch [5/200], Step [200/500] Loss: 4.1714
Epoch [5/200], Step [300/500] Loss: 3.7899
Epoch [5/200], Step [400/500] Loss: 4.0602
Epoch [5/200], Step [500/500] Loss: 3.6776
Accuracy of the model on the test images: 17.67 %
use 0.0min20.553125143051147s
Epoch [6/200], Step [100/500] Loss: 4.0879
Epoch [6/200], Step [200/500] Loss: 3.7493
Epoch [6/200], Step [300/500] Loss: 3.8425
Epoch [6/200], Step [400/500] Loss: 3.9041
Epoch [6/200], Step [500/500] Loss: 3.5192
Accuracy of the model on the test images: 17.4 %
use 0.0min20.53827691078186s
Epoch [7/200], Step [100/500] Loss: 3.3641
Epoch [7/200], Step [200/500] Loss: 3.4089
Epoch [7/200], Step [300/500] Loss: 3.6816
Epoch [7/200], Step [400/500] Loss: 4.2153
Epoch [7/200], Step [500/500] Loss: 4.0603
Accuracy of the model on the test images: 20.82 %
use 0.0min20.587323427200317s
Epoch [8/200], Step [100/500] Loss: 3.8739
Epoch [8/200], Step [200/500] Loss: 3.7661
Epoch [8/200], Step [300/500] Loss: 3.4724
Epoch [8/200], Step [400/500] Loss: 3.8320
Epoch [8/200], Step [500/500] Loss: 3.8333
Accuracy of the model on the test images: 22.37 %
use 0.0min20.577714204788208s
Epoch [9/200], Step [100/500] Loss: 3.7074
Epoch [9/200], Step [200/500] Loss: 3.8754
Epoch [9/200], Step [300/500] Loss: 3.2502
Epoch [9/200], Step [400/500] Loss: 3.1254
Epoch [9/200], Step [500/500] Loss: 3.5686
Accuracy of the model on the test images: 25.91 %
use 0.0min20.565754652023315s
Epoch [10/200], Step [100/500] Loss: 3.9443
Epoch [10/200], Step [200/500] Loss: 3.9528
Epoch [10/200], Step [300/500] Loss: 3.4973
Epoch [10/200], Step [400/500] Loss: 3.3094
Epoch [10/200], Step [500/500] Loss: 3.8865
Accuracy of the model on the test images: 28.39 %
use 0.0min20.67314100265503s
Epoch [11/200], Step [100/500] Loss: 4.1321
Epoch [11/200], Step [200/500] Loss: 3.0201
Epoch [11/200], Step [300/500] Loss: 2.9262
Epoch [11/200], Step [400/500] Loss: 3.8766
Epoch [11/200], Step [500/500] Loss: 3.8025
Accuracy of the model on the test images: 30.39 %
use 0.0min20.605696201324463s
Epoch [12/200], Step [100/500] Loss: 3.9981
Epoch [12/200], Step [200/500] Loss: 3.2076
Epoch [12/200], Step [300/500] Loss: 3.7684
Epoch [12/200], Step [400/500] Loss: 3.7398
Epoch [12/200], Step [500/500] Loss: 3.8506
Accuracy of the model on the test images: 32.4 %
use 0.0min20.603549003601074s
Epoch [13/200], Step [100/500] Loss: 3.2969
Epoch [13/200], Step [200/500] Loss: 3.7856
Epoch [13/200], Step [300/500] Loss: 2.8820
Epoch [13/200], Step [400/500] Loss: 3.9198
Epoch [13/200], Step [500/500] Loss: 3.6732
Accuracy of the model on the test images: 34.36 %
use 0.0min20.573402881622314s
Epoch [14/200], Step [100/500] Loss: 3.9373
Epoch [14/200], Step [200/500] Loss: 4.0874
Epoch [14/200], Step [300/500] Loss: 3.4495
Epoch [14/200], Step [400/500] Loss: 3.7622
Epoch [14/200], Step [500/500] Loss: 3.9038
Accuracy of the model on the test images: 34.08 %
use 0.0min20.558907747268677s
Epoch [15/200], Step [100/500] Loss: 3.7387
Epoch [15/200], Step [200/500] Loss: 3.8316
Epoch [15/200], Step [300/500] Loss: 3.6422
Epoch [15/200], Step [400/500] Loss: 2.9413
Epoch [15/200], Step [500/500] Loss: 3.2966
Accuracy of the model on the test images: 36.95 %
use 0.0min20.563921213150024s
Epoch [16/200], Step [100/500] Loss: 3.0023
Epoch [16/200], Step [200/500] Loss: 3.6259
Epoch [16/200], Step [300/500] Loss: 3.7841
Epoch [16/200], Step [400/500] Loss: 3.0014
Epoch [16/200], Step [500/500] Loss: 3.8931
Accuracy of the model on the test images: 38.75 %
use 0.0min20.559727907180786s
Epoch [17/200], Step [100/500] Loss: 3.7381
Epoch [17/200], Step [200/500] Loss: 2.4827
Epoch [17/200], Step [300/500] Loss: 3.4061
Epoch [17/200], Step [400/500] Loss: 3.5481
Epoch [17/200], Step [500/500] Loss: 3.6850
Accuracy of the model on the test images: 40.53 %
use 0.0min20.605258226394653s
Epoch [18/200], Step [100/500] Loss: 2.1450
Epoch [18/200], Step [200/500] Loss: 3.5551
Epoch [18/200], Step [300/500] Loss: 3.6963
Epoch [18/200], Step [400/500] Loss: 3.3295
Epoch [18/200], Step [500/500] Loss: 3.6757
Accuracy of the model on the test images: 43.47 %
use 0.0min20.565447092056274s
Epoch [19/200], Step [100/500] Loss: 3.4670
Epoch [19/200], Step [200/500] Loss: 2.3863
Epoch [19/200], Step [300/500] Loss: 2.0803
Epoch [19/200], Step [400/500] Loss: 2.9740
Epoch [19/200], Step [500/500] Loss: 2.6086
Accuracy of the model on the test images: 44.38 %
use 0.0min20.576362371444702s
Epoch [20/200], Step [100/500] Loss: 3.6958
Epoch [20/200], Step [200/500] Loss: 2.9528
Epoch [20/200], Step [300/500] Loss: 3.2621
Epoch [20/200], Step [400/500] Loss: 3.5945
Epoch [20/200], Step [500/500] Loss: 3.0555
Accuracy of the model on the test images: 45.25 %
use 0.0min20.55819010734558s
Epoch [21/200], Step [100/500] Loss: 2.7764
Epoch [21/200], Step [200/500] Loss: 2.7665
Epoch [21/200], Step [300/500] Loss: 3.2122
Epoch [21/200], Step [400/500] Loss: 3.3697
Epoch [21/200], Step [500/500] Loss: 3.6805
Accuracy of the model on the test images: 46.15 %
use 0.0min20.55286169052124s
Epoch [22/200], Step [100/500] Loss: 1.9792
Epoch [22/200], Step [200/500] Loss: 3.2696
Epoch [22/200], Step [300/500] Loss: 3.5111
Epoch [22/200], Step [400/500] Loss: 2.5218
Epoch [22/200], Step [500/500] Loss: 3.4128
Accuracy of the model on the test images: 50.65 %
use 0.0min20.55747890472412s
Epoch [23/200], Step [100/500] Loss: 2.9744
Epoch [23/200], Step [200/500] Loss: 2.2325
Epoch [23/200], Step [300/500] Loss: 3.1913
Epoch [23/200], Step [400/500] Loss: 2.3212
Epoch [23/200], Step [500/500] Loss: 3.4201
Accuracy of the model on the test images: 52.31 %
use 0.0min20.56867814064026s
Epoch [24/200], Step [100/500] Loss: 3.2548
Epoch [24/200], Step [200/500] Loss: 2.8263
Epoch [24/200], Step [300/500] Loss: 1.7920
Epoch [24/200], Step [400/500] Loss: 2.4103
Epoch [24/200], Step [500/500] Loss: 3.1759
Accuracy of the model on the test images: 52.24 %
use 0.0min20.573205947875977s
Epoch [25/200], Step [100/500] Loss: 3.2261
Epoch [25/200], Step [200/500] Loss: 1.7828
Epoch [25/200], Step [300/500] Loss: 3.4207
Epoch [25/200], Step [400/500] Loss: 2.0670
Epoch [25/200], Step [500/500] Loss: 2.9430
Accuracy of the model on the test images: 53.53 %
use 0.0min20.562430381774902s
Epoch [26/200], Step [100/500] Loss: 2.6081
Epoch [26/200], Step [200/500] Loss: 3.2208
Epoch [26/200], Step [300/500] Loss: 1.8349
Epoch [26/200], Step [400/500] Loss: 2.9786
Epoch [26/200], Step [500/500] Loss: 3.3320
Accuracy of the model on the test images: 54.59 %
use 0.0min20.57682728767395s
Epoch [27/200], Step [100/500] Loss: 3.0493
Epoch [27/200], Step [200/500] Loss: 1.6043
Epoch [27/200], Step [300/500] Loss: 2.5076
Epoch [27/200], Step [400/500] Loss: 3.2175
Epoch [27/200], Step [500/500] Loss: 3.2086
Accuracy of the model on the test images: 54.74 %
use 0.0min20.57382106781006s
Epoch [28/200], Step [100/500] Loss: 3.2156
Epoch [28/200], Step [200/500] Loss: 3.0681
Epoch [28/200], Step [300/500] Loss: 3.3450
Epoch [28/200], Step [400/500] Loss: 2.6080
Epoch [28/200], Step [500/500] Loss: 2.8209
Accuracy of the model on the test images: 56.12 %
use 0.0min20.601258039474487s
Epoch [29/200], Step [100/500] Loss: 1.3415
Epoch [29/200], Step [200/500] Loss: 2.2698
Epoch [29/200], Step [300/500] Loss: 2.0713
Epoch [29/200], Step [400/500] Loss: 3.1718
Epoch [29/200], Step [500/500] Loss: 2.4897
Accuracy of the model on the test images: 58.77 %
use 0.0min20.558830738067627s
Epoch [30/200], Step [100/500] Loss: 2.7607
Epoch [30/200], Step [200/500] Loss: 1.5064
Epoch [30/200], Step [300/500] Loss: 3.0134
Epoch [30/200], Step [400/500] Loss: 2.0962
Epoch [30/200], Step [500/500] Loss: 2.9495
Accuracy of the model on the test images: 58.98 %
use 0.0min20.562129259109497s
Epoch [31/200], Step [100/500] Loss: 3.0823
Epoch [31/200], Step [200/500] Loss: 2.8494
Epoch [31/200], Step [300/500] Loss: 2.3089
Epoch [31/200], Step [400/500] Loss: 1.9993
Epoch [31/200], Step [500/500] Loss: 2.2717
Accuracy of the model on the test images: 58.5 %
use 0.0min20.540247201919556s
Epoch [32/200], Step [100/500] Loss: 2.8952
Epoch [32/200], Step [200/500] Loss: 1.8841
Epoch [32/200], Step [300/500] Loss: 3.1238
Epoch [32/200], Step [400/500] Loss: 2.2653
Epoch [32/200], Step [500/500] Loss: 2.7214
Accuracy of the model on the test images: 60.02 %
use 0.0min20.57820773124695s
Epoch [33/200], Step [100/500] Loss: 2.5430
Epoch [33/200], Step [200/500] Loss: 3.0180
Epoch [33/200], Step [300/500] Loss: 2.8375
Epoch [33/200], Step [400/500] Loss: 3.1144
Epoch [33/200], Step [500/500] Loss: 1.3336
Accuracy of the model on the test images: 60.01 %
use 0.0min20.55961036682129s
Epoch [34/200], Step [100/500] Loss: 3.0738
Epoch [34/200], Step [200/500] Loss: 1.6780
Epoch [34/200], Step [300/500] Loss: 2.9272
Epoch [34/200], Step [400/500] Loss: 3.2433
Epoch [34/200], Step [500/500] Loss: 1.8242
Accuracy of the model on the test images: 61.06 %
use 0.0min20.55697011947632s
Epoch [35/200], Step [100/500] Loss: 2.7403
Epoch [35/200], Step [200/500] Loss: 2.8067
Epoch [35/200], Step [300/500] Loss: 3.2316
Epoch [35/200], Step [400/500] Loss: 2.7273
Epoch [35/200], Step [500/500] Loss: 2.9812
Accuracy of the model on the test images: 61.07 %
use 0.0min20.56986403465271s
Epoch [36/200], Step [100/500] Loss: 2.2424
Epoch [36/200], Step [200/500] Loss: 1.5960
Epoch [36/200], Step [300/500] Loss: 2.4490
Epoch [36/200], Step [400/500] Loss: 1.9833
Epoch [36/200], Step [500/500] Loss: 1.7756
Accuracy of the model on the test images: 61.99 %
use 0.0min20.587810516357422s
Epoch [37/200], Step [100/500] Loss: 2.3948
Epoch [37/200], Step [200/500] Loss: 2.7998
Epoch [37/200], Step [300/500] Loss: 2.7647
Epoch [37/200], Step [400/500] Loss: 2.5772
Epoch [37/200], Step [500/500] Loss: 2.8614
Accuracy of the model on the test images: 62.01 %
use 0.0min20.54871106147766s
Epoch [38/200], Step [100/500] Loss: 2.6874
Epoch [38/200], Step [200/500] Loss: 1.2753
Epoch [38/200], Step [300/500] Loss: 2.9217
Epoch [38/200], Step [400/500] Loss: 3.0492
Epoch [38/200], Step [500/500] Loss: 2.7927
Accuracy of the model on the test images: 61.13 %
use 0.0min20.576314449310303s
Epoch [39/200], Step [100/500] Loss: 2.7591
Epoch [39/200], Step [200/500] Loss: 2.4770
Epoch [39/200], Step [300/500] Loss: 2.4154
Epoch [39/200], Step [400/500] Loss: 2.2822
Epoch [39/200], Step [500/500] Loss: 1.4424
Accuracy of the model on the test images: 63.91 %
use 0.0min20.582370042800903s
Epoch [40/200], Step [100/500] Loss: 2.9856
Epoch [40/200], Step [200/500] Loss: 2.6278
Epoch [40/200], Step [300/500] Loss: 2.9802
Epoch [40/200], Step [400/500] Loss: 1.7501
Epoch [40/200], Step [500/500] Loss: 2.7796
Accuracy of the model on the test images: 63.5 %
use 0.0min20.566586017608643s
Epoch [41/200], Step [100/500] Loss: 2.8127
Epoch [41/200], Step [200/500] Loss: 1.0172
Epoch [41/200], Step [300/500] Loss: 2.7400
Epoch [41/200], Step [400/500] Loss: 2.6278
Epoch [41/200], Step [500/500] Loss: 3.0157
Accuracy of the model on the test images: 63.42 %
use 0.0min20.55940055847168s
Epoch [42/200], Step [100/500] Loss: 1.1076
Epoch [42/200], Step [200/500] Loss: 2.9837
Epoch [42/200], Step [300/500] Loss: 2.6981
Epoch [42/200], Step [400/500] Loss: 2.1914
Epoch [42/200], Step [500/500] Loss: 1.8929
Accuracy of the model on the test images: 61.08 %
use 0.0min20.563587427139282s
Epoch [43/200], Step [100/500] Loss: 2.7030
Epoch [43/200], Step [200/500] Loss: 2.6583
Epoch [43/200], Step [300/500] Loss: 1.3961
Epoch [43/200], Step [400/500] Loss: 2.4727
Epoch [43/200], Step [500/500] Loss: 1.6471
Accuracy of the model on the test images: 63.71 %
use 0.0min20.584805250167847s
Epoch [44/200], Step [100/500] Loss: 2.6830
Epoch [44/200], Step [200/500] Loss: 3.0156
Epoch [44/200], Step [300/500] Loss: 2.1286
Epoch [44/200], Step [400/500] Loss: 2.8233
Epoch [44/200], Step [500/500] Loss: 1.2222
Accuracy of the model on the test images: 64.43 %
use 0.0min20.55425238609314s
Epoch [45/200], Step [100/500] Loss: 2.6584
Epoch [45/200], Step [200/500] Loss: 2.6890
Epoch [45/200], Step [300/500] Loss: 3.1283
Epoch [45/200], Step [400/500] Loss: 2.6737
Epoch [45/200], Step [500/500] Loss: 2.1185
Accuracy of the model on the test images: 65.41 %
use 0.0min20.57489562034607s
Epoch [46/200], Step [100/500] Loss: 2.8614
Epoch [46/200], Step [200/500] Loss: 2.8155
Epoch [46/200], Step [300/500] Loss: 2.8558
Epoch [46/200], Step [400/500] Loss: 2.4669
Epoch [46/200], Step [500/500] Loss: 2.6695
Accuracy of the model on the test images: 65.98 %
use 0.0min20.580721616744995s
Epoch [47/200], Step [100/500] Loss: 2.1174
Epoch [47/200], Step [200/500] Loss: 0.9854
Epoch [47/200], Step [300/500] Loss: 2.1330
Epoch [47/200], Step [400/500] Loss: 2.4373
Epoch [47/200], Step [500/500] Loss: 2.5382
Accuracy of the model on the test images: 66.56 %
use 0.0min20.548205137252808s
Epoch [48/200], Step [100/500] Loss: 2.8388
Epoch [48/200], Step [200/500] Loss: 2.7994
Epoch [48/200], Step [300/500] Loss: 1.3432
Epoch [48/200], Step [400/500] Loss: 2.0102
Epoch [48/200], Step [500/500] Loss: 2.7221
Accuracy of the model on the test images: 65.37 %
use 0.0min20.57545757293701s
Epoch [49/200], Step [100/500] Loss: 2.7333
Epoch [49/200], Step [200/500] Loss: 1.1249
Epoch [49/200], Step [300/500] Loss: 2.1527
Epoch [49/200], Step [400/500] Loss: 2.6832
Epoch [49/200], Step [500/500] Loss: 1.0853
Accuracy of the model on the test images: 67.23 %
use 0.0min20.54992938041687s
Epoch [50/200], Step [100/500] Loss: 2.1665
Epoch [50/200], Step [200/500] Loss: 1.8453
Epoch [50/200], Step [300/500] Loss: 2.5208
Epoch [50/200], Step [400/500] Loss: 2.0102
Epoch [50/200], Step [500/500] Loss: 1.5296
Accuracy of the model on the test images: 66.47 %
use 0.0min20.569560766220093s
Epoch [51/200], Step [100/500] Loss: 2.2455
Epoch [51/200], Step [200/500] Loss: 1.1350
Epoch [51/200], Step [300/500] Loss: 2.7719
Epoch [51/200], Step [400/500] Loss: 2.5876
Epoch [51/200], Step [500/500] Loss: 2.0808
Accuracy of the model on the test images: 68.07 %
use 0.0min20.59921383857727s
Epoch [52/200], Step [100/500] Loss: 0.9167
Epoch [52/200], Step [200/500] Loss: 2.4627
Epoch [52/200], Step [300/500] Loss: 2.3724
Epoch [52/200], Step [400/500] Loss: 0.7734
Epoch [52/200], Step [500/500] Loss: 2.0108
Accuracy of the model on the test images: 66.56 %
use 0.0min20.575576543807983s
Epoch [53/200], Step [100/500] Loss: 1.9589
Epoch [53/200], Step [200/500] Loss: 1.3028
Epoch [53/200], Step [300/500] Loss: 2.4040
Epoch [53/200], Step [400/500] Loss: 1.3875
Epoch [53/200], Step [500/500] Loss: 1.6074
Accuracy of the model on the test images: 66.79 %
use 0.0min20.563728094100952s
Epoch [54/200], Step [100/500] Loss: 2.7122
Epoch [54/200], Step [200/500] Loss: 1.9426
Epoch [54/200], Step [300/500] Loss: 2.4717
Epoch [54/200], Step [400/500] Loss: 1.2387
Epoch [54/200], Step [500/500] Loss: 0.9918
Accuracy of the model on the test images: 67.79 %
use 0.0min20.57853603363037s
Epoch [55/200], Step [100/500] Loss: 2.4608
Epoch [55/200], Step [200/500] Loss: 2.3345
Epoch [55/200], Step [300/500] Loss: 2.4966
Epoch [55/200], Step [400/500] Loss: 2.3704
Epoch [55/200], Step [500/500] Loss: 1.0572
Accuracy of the model on the test images: 66.99 %
use 0.0min20.571059703826904s
Epoch [56/200], Step [100/500] Loss: 1.4127
Epoch [56/200], Step [200/500] Loss: 0.9468
Epoch [56/200], Step [300/500] Loss: 2.7228
Epoch [56/200], Step [400/500] Loss: 0.9251
Epoch [56/200], Step [500/500] Loss: 1.7493
Accuracy of the model on the test images: 68.11 %
use 0.0min20.559414625167847s
Epoch [57/200], Step [100/500] Loss: 2.4703
Epoch [57/200], Step [200/500] Loss: 2.6340
Epoch [57/200], Step [300/500] Loss: 2.6556
Epoch [57/200], Step [400/500] Loss: 1.9797
Epoch [57/200], Step [500/500] Loss: 1.7072
Accuracy of the model on the test images: 68.33 %
use 0.0min20.571043491363525s
Epoch [58/200], Step [100/500] Loss: 2.0545
Epoch [58/200], Step [200/500] Loss: 1.9410
Epoch [58/200], Step [300/500] Loss: 2.4254
Epoch [58/200], Step [400/500] Loss: 2.3523
Epoch [58/200], Step [500/500] Loss: 2.0542
Accuracy of the model on the test images: 67.36 %
use 0.0min20.5789737701416s
Epoch [59/200], Step [100/500] Loss: 2.1255
Epoch [59/200], Step [200/500] Loss: 2.2644
Epoch [59/200], Step [300/500] Loss: 1.5045
Epoch [59/200], Step [400/500] Loss: 2.9253
Epoch [59/200], Step [500/500] Loss: 2.2406
Accuracy of the model on the test images: 67.94 %
use 0.0min20.57670783996582s
Epoch [60/200], Step [100/500] Loss: 1.9240
Epoch [60/200], Step [200/500] Loss: 2.4129
Epoch [60/200], Step [300/500] Loss: 2.3032
Epoch [60/200], Step [400/500] Loss: 2.2535
Epoch [60/200], Step [500/500] Loss: 1.8229
Accuracy of the model on the test images: 69.48 %
use 0.0min20.565730571746826s
Epoch [61/200], Step [100/500] Loss: 0.5190
Epoch [61/200], Step [200/500] Loss: 2.0898
Epoch [61/200], Step [300/500] Loss: 1.0934
Epoch [61/200], Step [400/500] Loss: 1.7987
Epoch [61/200], Step [500/500] Loss: 1.0228
Accuracy of the model on the test images: 67.83 %
use 0.0min20.598429441452026s
Epoch [62/200], Step [100/500] Loss: 2.7897
Epoch [62/200], Step [200/500] Loss: 1.4987
Epoch [62/200], Step [300/500] Loss: 1.8081
Epoch [62/200], Step [400/500] Loss: 2.5582
Epoch [62/200], Step [500/500] Loss: 2.6745
Accuracy of the model on the test images: 68.44 %
use 0.0min20.624147176742554s
Epoch [63/200], Step [100/500] Loss: 2.3224
Epoch [63/200], Step [200/500] Loss: 2.5201
Epoch [63/200], Step [300/500] Loss: 0.5925
Epoch [63/200], Step [400/500] Loss: 1.0193
Epoch [63/200], Step [500/500] Loss: 0.8275
Accuracy of the model on the test images: 69.22 %
use 0.0min20.572014331817627s
Epoch [64/200], Step [100/500] Loss: 1.8970
Epoch [64/200], Step [200/500] Loss: 2.0111
Epoch [64/200], Step [300/500] Loss: 2.3616
Epoch [64/200], Step [400/500] Loss: 2.1698
Epoch [64/200], Step [500/500] Loss: 1.5965
Accuracy of the model on the test images: 68.63 %
use 0.0min20.575780868530273s
Epoch [65/200], Step [100/500] Loss: 1.5909
Epoch [65/200], Step [200/500] Loss: 1.4618
Epoch [65/200], Step [300/500] Loss: 2.5006
Epoch [65/200], Step [400/500] Loss: 0.6584
Epoch [65/200], Step [500/500] Loss: 1.5347
Accuracy of the model on the test images: 69.31 %
use 0.0min20.563440322875977s
Epoch [66/200], Step [100/500] Loss: 2.4060
Epoch [66/200], Step [200/500] Loss: 2.6861
Epoch [66/200], Step [300/500] Loss: 2.1461
Epoch [66/200], Step [400/500] Loss: 1.9965
Epoch [66/200], Step [500/500] Loss: 1.9670
Accuracy of the model on the test images: 69.66 %
use 0.0min20.569555521011353s
Epoch [67/200], Step [100/500] Loss: 0.4118
Epoch [67/200], Step [200/500] Loss: 2.5139
Epoch [67/200], Step [300/500] Loss: 2.5679
Epoch [67/200], Step [400/500] Loss: 2.4008
Epoch [67/200], Step [500/500] Loss: 2.0521
Accuracy of the model on the test images: 69.69 %
use 0.0min20.61587929725647s
Epoch [68/200], Step [100/500] Loss: 1.6595
Epoch [68/200], Step [200/500] Loss: 2.3468
Epoch [68/200], Step [300/500] Loss: 2.4786
Epoch [68/200], Step [400/500] Loss: 2.5231
Epoch [68/200], Step [500/500] Loss: 2.3521
Accuracy of the model on the test images: 69.94 %
use 0.0min20.554180145263672s
Epoch [69/200], Step [100/500] Loss: 2.4418
Epoch [69/200], Step [200/500] Loss: 2.6581
Epoch [69/200], Step [300/500] Loss: 2.1739
Epoch [69/200], Step [400/500] Loss: 2.0204
Epoch [69/200], Step [500/500] Loss: 2.5698
Accuracy of the model on the test images: 69.53 %
use 0.0min20.614558458328247s
Epoch [70/200], Step [100/500] Loss: 2.2597
Epoch [70/200], Step [200/500] Loss: 1.5124
Epoch [70/200], Step [300/500] Loss: 1.6330
Epoch [70/200], Step [400/500] Loss: 0.7440
Epoch [70/200], Step [500/500] Loss: 2.3981
Accuracy of the model on the test images: 70.21 %
use 0.0min20.55963921546936s
Epoch [71/200], Step [100/500] Loss: 1.9647
Epoch [71/200], Step [200/500] Loss: 1.0061
Epoch [71/200], Step [300/500] Loss: 1.6910
Epoch [71/200], Step [400/500] Loss: 2.4693
Epoch [71/200], Step [500/500] Loss: 2.3597
Accuracy of the model on the test images: 69.73 %
use 0.0min20.597806215286255s
Epoch [72/200], Step [100/500] Loss: 1.2391
Epoch [72/200], Step [200/500] Loss: 1.7451
Epoch [72/200], Step [300/500] Loss: 1.4576
Epoch [72/200], Step [400/500] Loss: 2.6661
Epoch [72/200], Step [500/500] Loss: 1.8903
Accuracy of the model on the test images: 70.11 %
use 0.0min20.533710479736328s
Epoch [73/200], Step [100/500] Loss: 2.4056
Epoch [73/200], Step [200/500] Loss: 2.2574
Epoch [73/200], Step [300/500] Loss: 2.4138
Epoch [73/200], Step [400/500] Loss: 2.5121
Epoch [73/200], Step [500/500] Loss: 2.6018
Accuracy of the model on the test images: 69.59 %
use 0.0min20.558839797973633s
Epoch [74/200], Step [100/500] Loss: 1.2735
Epoch [74/200], Step [200/500] Loss: 2.2442
Epoch [74/200], Step [300/500] Loss: 2.3996
Epoch [74/200], Step [400/500] Loss: 2.0632
Epoch [74/200], Step [500/500] Loss: 2.4572
Accuracy of the model on the test images: 69.71 %
use 0.0min20.57104754447937s
Epoch [75/200], Step [100/500] Loss: 2.4749
Epoch [75/200], Step [200/500] Loss: 2.3034
Epoch [75/200], Step [300/500] Loss: 2.7674
Epoch [75/200], Step [400/500] Loss: 2.3820
Epoch [75/200], Step [500/500] Loss: 2.1781
Accuracy of the model on the test images: 69.22 %
use 0.0min20.55558466911316s
Epoch [76/200], Step [100/500] Loss: 0.5393
Epoch [76/200], Step [200/500] Loss: 2.1347
Epoch [76/200], Step [300/500] Loss: 2.0176
Epoch [76/200], Step [400/500] Loss: 2.3896
Epoch [76/200], Step [500/500] Loss: 2.1903
Accuracy of the model on the test images: 69.99 %
use 0.0min20.568068265914917s
Epoch [77/200], Step [100/500] Loss: 2.2278
Epoch [77/200], Step [200/500] Loss: 1.4643
Epoch [77/200], Step [300/500] Loss: 2.5015
Epoch [77/200], Step [400/500] Loss: 2.1213
Epoch [77/200], Step [500/500] Loss: 1.3269
Accuracy of the model on the test images: 69.77 %
use 0.0min20.610535860061646s
Epoch [78/200], Step [100/500] Loss: 2.3664
Epoch [78/200], Step [200/500] Loss: 2.0794
Epoch [78/200], Step [300/500] Loss: 1.6979
Epoch [78/200], Step [400/500] Loss: 1.7097
Epoch [78/200], Step [500/500] Loss: 1.3437
Accuracy of the model on the test images: 70.81 %
use 0.0min20.569110870361328s
Epoch [79/200], Step [100/500] Loss: 2.1547
Epoch [79/200], Step [200/500] Loss: 1.7811
Epoch [79/200], Step [300/500] Loss: 2.1639
Epoch [79/200], Step [400/500] Loss: 1.5924
Epoch [79/200], Step [500/500] Loss: 0.7399
Accuracy of the model on the test images: 70.25 %
use 0.0min20.58094096183777s
Epoch [80/200], Step [100/500] Loss: 2.1095
Epoch [80/200], Step [200/500] Loss: 1.3439
Epoch [80/200], Step [300/500] Loss: 2.5862
Epoch [80/200], Step [400/500] Loss: 2.3377
Epoch [80/200], Step [500/500] Loss: 2.2636
Accuracy of the model on the test images: 70.62 %
use 0.0min20.559268712997437s
Epoch [81/200], Step [100/500] Loss: 2.5232
Epoch [81/200], Step [200/500] Loss: 1.9517
Epoch [81/200], Step [300/500] Loss: 2.0707
Epoch [81/200], Step [400/500] Loss: 2.2953
Epoch [81/200], Step [500/500] Loss: 0.6598
Accuracy of the model on the test images: 70.1 %
use 0.0min20.59356713294983s
Epoch [82/200], Step [100/500] Loss: 2.0120
Epoch [82/200], Step [200/500] Loss: 1.9701
Epoch [82/200], Step [300/500] Loss: 2.2314
Epoch [82/200], Step [400/500] Loss: 2.1266
Epoch [82/200], Step [500/500] Loss: 1.5196
Accuracy of the model on the test images: 70.65 %
use 0.0min20.570524215698242s
Epoch [83/200], Step [100/500] Loss: 1.4251
Epoch [83/200], Step [200/500] Loss: 2.2970
Epoch [83/200], Step [300/500] Loss: 2.6220
Epoch [83/200], Step [400/500] Loss: 2.2916
Epoch [83/200], Step [500/500] Loss: 2.4677
Accuracy of the model on the test images: 70.83 %
use 0.0min20.57495927810669s
Epoch [84/200], Step [100/500] Loss: 1.1092
Epoch [84/200], Step [200/500] Loss: 2.5165
Epoch [84/200], Step [300/500] Loss: 0.7905
Epoch [84/200], Step [400/500] Loss: 1.8410
Epoch [84/200], Step [500/500] Loss: 2.3548
Accuracy of the model on the test images: 70.48 %
use 0.0min20.583019256591797s
Epoch [85/200], Step [100/500] Loss: 2.4547
Epoch [85/200], Step [200/500] Loss: 1.9760
Epoch [85/200], Step [300/500] Loss: 2.2574
Epoch [85/200], Step [400/500] Loss: 1.4774
Epoch [85/200], Step [500/500] Loss: 2.0934
Accuracy of the model on the test images: 71.42 %
use 0.0min20.60036563873291s
Epoch [86/200], Step [100/500] Loss: 2.0185
Epoch [86/200], Step [200/500] Loss: 2.1625
Epoch [86/200], Step [300/500] Loss: 2.5006
Epoch [86/200], Step [400/500] Loss: 2.4513
Epoch [86/200], Step [500/500] Loss: 2.0119
Accuracy of the model on the test images: 70.49 %
use 0.0min20.592283964157104s
Epoch [87/200], Step [100/500] Loss: 1.5303
Epoch [87/200], Step [200/500] Loss: 2.1887
Epoch [87/200], Step [300/500] Loss: 2.3164
Epoch [87/200], Step [400/500] Loss: 2.4048
Epoch [87/200], Step [500/500] Loss: 2.3217
Accuracy of the model on the test images: 70.14 %
use 0.0min20.558128356933594s
Epoch [88/200], Step [100/500] Loss: 0.7063
Epoch [88/200], Step [200/500] Loss: 1.0208
Epoch [88/200], Step [300/500] Loss: 2.1137
Epoch [88/200], Step [400/500] Loss: 1.9834
Epoch [88/200], Step [500/500] Loss: 1.6025
Accuracy of the model on the test images: 70.52 %
use 0.0min20.59108805656433s
Epoch [89/200], Step [100/500] Loss: 0.6478
Epoch [89/200], Step [200/500] Loss: 2.1763
Epoch [89/200], Step [300/500] Loss: 1.8871
Epoch [89/200], Step [400/500] Loss: 2.1027
Epoch [89/200], Step [500/500] Loss: 1.1530
Accuracy of the model on the test images: 70.89 %
use 0.0min20.575583934783936s
Epoch [90/200], Step [100/500] Loss: 0.7405
Epoch [90/200], Step [200/500] Loss: 1.6733
Epoch [90/200], Step [300/500] Loss: 1.0202
Epoch [90/200], Step [400/500] Loss: 0.5583
Epoch [90/200], Step [500/500] Loss: 2.0358
Accuracy of the model on the test images: 70.96 %
use 0.0min20.558996438980103s
Epoch [91/200], Step [100/500] Loss: 1.1312
Epoch [91/200], Step [200/500] Loss: 1.4149
Epoch [91/200], Step [300/500] Loss: 2.5919
Epoch [91/200], Step [400/500] Loss: 2.0737
Epoch [91/200], Step [500/500] Loss: 2.2732
Accuracy of the model on the test images: 70.94 %
use 0.0min20.59275484085083s
Epoch [92/200], Step [100/500] Loss: 2.0307
Epoch [92/200], Step [200/500] Loss: 1.9069
Epoch [92/200], Step [300/500] Loss: 2.4373
Epoch [92/200], Step [400/500] Loss: 2.2249
Epoch [92/200], Step [500/500] Loss: 1.7237
Accuracy of the model on the test images: 69.91 %
use 0.0min20.58454942703247s
Epoch [93/200], Step [100/500] Loss: 1.2309
Epoch [93/200], Step [200/500] Loss: 1.6310
Epoch [93/200], Step [300/500] Loss: 1.1844
Epoch [93/200], Step [400/500] Loss: 2.4646
Epoch [93/200], Step [500/500] Loss: 1.0722
Accuracy of the model on the test images: 70.68 %
use 0.0min20.585512161254883s
Epoch [94/200], Step [100/500] Loss: 1.0893
Epoch [94/200], Step [200/500] Loss: 2.1244
Epoch [94/200], Step [300/500] Loss: 2.3294
Epoch [94/200], Step [400/500] Loss: 1.9373
Epoch [94/200], Step [500/500] Loss: 1.7801
Accuracy of the model on the test images: 70.46 %
use 0.0min20.566587686538696s
Epoch [95/200], Step [100/500] Loss: 1.9155
Epoch [95/200], Step [200/500] Loss: 2.0733
Epoch [95/200], Step [300/500] Loss: 1.2881
Epoch [95/200], Step [400/500] Loss: 1.1430
Epoch [95/200], Step [500/500] Loss: 1.3174
Accuracy of the model on the test images: 71.38 %
use 0.0min20.579296588897705s
Epoch [96/200], Step [100/500] Loss: 2.3137
Epoch [96/200], Step [200/500] Loss: 2.0052
Epoch [96/200], Step [300/500] Loss: 1.7943
Epoch [96/200], Step [400/500] Loss: 2.1875
Epoch [96/200], Step [500/500] Loss: 2.0805
Accuracy of the model on the test images: 71.04 %
use 0.0min20.5848228931427s
Epoch [97/200], Step [100/500] Loss: 1.6475
Epoch [97/200], Step [200/500] Loss: 1.2999
Epoch [97/200], Step [300/500] Loss: 0.5330
Epoch [97/200], Step [400/500] Loss: 2.1006
Epoch [97/200], Step [500/500] Loss: 2.0848
Accuracy of the model on the test images: 71.5 %
use 0.0min20.578545331954956s
Epoch [98/200], Step [100/500] Loss: 1.8841
Epoch [98/200], Step [200/500] Loss: 0.8905
Epoch [98/200], Step [300/500] Loss: 2.1971
Epoch [98/200], Step [400/500] Loss: 0.3851
Epoch [98/200], Step [500/500] Loss: 1.8517
Accuracy of the model on the test images: 70.75 %
use 0.0min20.55072855949402s
Epoch [99/200], Step [100/500] Loss: 1.7956
Epoch [99/200], Step [200/500] Loss: 1.1191
Epoch [99/200], Step [300/500] Loss: 2.0882
Epoch [99/200], Step [400/500] Loss: 1.6622
Epoch [99/200], Step [500/500] Loss: 2.0943
Accuracy of the model on the test images: 71.13 %
use 0.0min20.59413242340088s
Epoch [100/200], Step [100/500] Loss: 0.3222
Epoch [100/200], Step [200/500] Loss: 1.0598
Epoch [100/200], Step [300/500] Loss: 2.1213
Epoch [100/200], Step [400/500] Loss: 2.1117
Epoch [100/200], Step [500/500] Loss: 1.9403
Accuracy of the model on the test images: 71.31 %
use 0.0min20.62356424331665s
Epoch [101/200], Step [100/500] Loss: 1.9459
Epoch [101/200], Step [200/500] Loss: 0.7791
Epoch [101/200], Step [300/500] Loss: 1.8812
Epoch [101/200], Step [400/500] Loss: 0.9668
Epoch [101/200], Step [500/500] Loss: 1.2563
Accuracy of the model on the test images: 71.06 %
use 0.0min20.577518224716187s
Epoch [102/200], Step [100/500] Loss: 1.4139
Epoch [102/200], Step [200/500] Loss: 2.0665
Epoch [102/200], Step [300/500] Loss: 2.1635
Epoch [102/200], Step [400/500] Loss: 2.5603
Epoch [102/200], Step [500/500] Loss: 1.3941
Accuracy of the model on the test images: 71.85 %
use 0.0min20.579555988311768s
Epoch [103/200], Step [100/500] Loss: 0.4678
Epoch [103/200], Step [200/500] Loss: 0.2486
Epoch [103/200], Step [300/500] Loss: 1.3987
Epoch [103/200], Step [400/500] Loss: 2.1079
Epoch [103/200], Step [500/500] Loss: 1.7808
Accuracy of the model on the test images: 74.55 %
use 0.0min20.559417963027954s
Epoch [104/200], Step [100/500] Loss: 0.7784
Epoch [104/200], Step [200/500] Loss: 2.0021
Epoch [104/200], Step [300/500] Loss: 1.6035
Epoch [104/200], Step [400/500] Loss: 1.7185
Epoch [104/200], Step [500/500] Loss: 0.7297
Accuracy of the model on the test images: 75.14 %
use 0.0min20.567699670791626s
Epoch [105/200], Step [100/500] Loss: 1.7225
Epoch [105/200], Step [200/500] Loss: 1.1658
Epoch [105/200], Step [300/500] Loss: 0.6898
Epoch [105/200], Step [400/500] Loss: 1.6498
Epoch [105/200], Step [500/500] Loss: 1.7643
Accuracy of the model on the test images: 74.82 %
use 0.0min20.575838565826416s
Epoch [106/200], Step [100/500] Loss: 1.2480
Epoch [106/200], Step [200/500] Loss: 1.7975
Epoch [106/200], Step [300/500] Loss: 1.5042
Epoch [106/200], Step [400/500] Loss: 1.6249
Epoch [106/200], Step [500/500] Loss: 0.9821
Accuracy of the model on the test images: 75.0 %
use 0.0min20.591930866241455s
Epoch [107/200], Step [100/500] Loss: 1.8657
Epoch [107/200], Step [200/500] Loss: 1.7952
Epoch [107/200], Step [300/500] Loss: 1.6980
Epoch [107/200], Step [400/500] Loss: 0.9312
Epoch [107/200], Step [500/500] Loss: 1.4100
Accuracy of the model on the test images: 74.87 %
use 0.0min20.5633327960968s
Epoch [108/200], Step [100/500] Loss: 1.7571
Epoch [108/200], Step [200/500] Loss: 1.0123
Epoch [108/200], Step [300/500] Loss: 1.5292
Epoch [108/200], Step [400/500] Loss: 1.9204
Epoch [108/200], Step [500/500] Loss: 1.6726
Accuracy of the model on the test images: 75.44 %
use 0.0min20.605122327804565s
Epoch [109/200], Step [100/500] Loss: 1.0595
Epoch [109/200], Step [200/500] Loss: 1.8087
Epoch [109/200], Step [300/500] Loss: 1.0939
Epoch [109/200], Step [400/500] Loss: 1.6037
Epoch [109/200], Step [500/500] Loss: 2.0924
Accuracy of the model on the test images: 75.4 %
use 0.0min20.572604179382324s
Epoch [110/200], Step [100/500] Loss: 2.0441
Epoch [110/200], Step [200/500] Loss: 1.1455
Epoch [110/200], Step [300/500] Loss: 0.7206
Epoch [110/200], Step [400/500] Loss: 0.6228
Epoch [110/200], Step [500/500] Loss: 1.8622
Accuracy of the model on the test images: 75.5 %
use 0.0min20.553505897521973s
Epoch [111/200], Step [100/500] Loss: 1.0353
Epoch [111/200], Step [200/500] Loss: 2.2427
Epoch [111/200], Step [300/500] Loss: 2.1725
Epoch [111/200], Step [400/500] Loss: 1.5280
Epoch [111/200], Step [500/500] Loss: 1.4664
Accuracy of the model on the test images: 75.29 %
use 0.0min20.563225269317627s
Epoch [112/200], Step [100/500] Loss: 1.1391
Epoch [112/200], Step [200/500] Loss: 0.4924
Epoch [112/200], Step [300/500] Loss: 0.2584
Epoch [112/200], Step [400/500] Loss: 1.6328
Epoch [112/200], Step [500/500] Loss: 0.6042
Accuracy of the model on the test images: 75.19 %
use 0.0min20.582221746444702s
Epoch [113/200], Step [100/500] Loss: 1.8356
Epoch [113/200], Step [200/500] Loss: 1.5393
Epoch [113/200], Step [300/500] Loss: 1.7863
Epoch [113/200], Step [400/500] Loss: 1.8563
Epoch [113/200], Step [500/500] Loss: 2.1537
Accuracy of the model on the test images: 75.4 %
use 0.0min20.558560371398926s
Epoch [114/200], Step [100/500] Loss: 1.2635
Epoch [114/200], Step [200/500] Loss: 0.7171
Epoch [114/200], Step [300/500] Loss: 1.8709
Epoch [114/200], Step [400/500] Loss: 2.0476
Epoch [114/200], Step [500/500] Loss: 1.8067
Accuracy of the model on the test images: 75.31 %
use 0.0min20.567386865615845s
Epoch [115/200], Step [100/500] Loss: 1.8186
Epoch [115/200], Step [200/500] Loss: 1.0045
Epoch [115/200], Step [300/500] Loss: 0.8481
Epoch [115/200], Step [400/500] Loss: 2.3573
Epoch [115/200], Step [500/500] Loss: 1.4470
Accuracy of the model on the test images: 75.49 %
use 0.0min20.611566066741943s
Epoch [116/200], Step [100/500] Loss: 2.1492
Epoch [116/200], Step [200/500] Loss: 1.5311
Epoch [116/200], Step [300/500] Loss: 1.7044
Epoch [116/200], Step [400/500] Loss: 2.0091
Epoch [116/200], Step [500/500] Loss: 1.5411
Accuracy of the model on the test images: 75.57 %
use 0.0min20.577484369277954s
Epoch [117/200], Step [100/500] Loss: 1.2268
Epoch [117/200], Step [200/500] Loss: 0.1760
Epoch [117/200], Step [300/500] Loss: 0.1852
Epoch [117/200], Step [400/500] Loss: 0.7704
Epoch [117/200], Step [500/500] Loss: 2.0371
Accuracy of the model on the test images: 75.53 %
use 0.0min20.580153703689575s
Epoch [118/200], Step [100/500] Loss: 1.7165
Epoch [118/200], Step [200/500] Loss: 1.3778
Epoch [118/200], Step [300/500] Loss: 1.2850
Epoch [118/200], Step [400/500] Loss: 1.8418
Epoch [118/200], Step [500/500] Loss: 0.8564
Accuracy of the model on the test images: 75.09 %
use 0.0min20.5632164478302s
Epoch [119/200], Step [100/500] Loss: 1.7683
Epoch [119/200], Step [200/500] Loss: 1.7948
Epoch [119/200], Step [300/500] Loss: 1.5932
Epoch [119/200], Step [400/500] Loss: 1.6570
Epoch [119/200], Step [500/500] Loss: 1.4463
Accuracy of the model on the test images: 75.54 %
use 0.0min20.575408935546875s
Epoch [120/200], Step [100/500] Loss: 1.2803
Epoch [120/200], Step [200/500] Loss: 1.9159
Epoch [120/200], Step [300/500] Loss: 1.8203
Epoch [120/200], Step [400/500] Loss: 1.4216
Epoch [120/200], Step [500/500] Loss: 1.4928
Accuracy of the model on the test images: 75.46 %
use 0.0min20.57673954963684s
Epoch [121/200], Step [100/500] Loss: 1.5456
Epoch [121/200], Step [200/500] Loss: 2.0293
Epoch [121/200], Step [300/500] Loss: 1.2598
Epoch [121/200], Step [400/500] Loss: 1.8437
Epoch [121/200], Step [500/500] Loss: 1.9020
Accuracy of the model on the test images: 75.83 %
use 0.0min20.5976459980011s
Epoch [122/200], Step [100/500] Loss: 2.3689
Epoch [122/200], Step [200/500] Loss: 2.0162
Epoch [122/200], Step [300/500] Loss: 1.6390
Epoch [122/200], Step [400/500] Loss: 1.5606
Epoch [122/200], Step [500/500] Loss: 1.8211
Accuracy of the model on the test images: 75.76 %
use 0.0min20.56261420249939s
Epoch [123/200], Step [100/500] Loss: 1.5309
Epoch [123/200], Step [200/500] Loss: 0.9289
Epoch [123/200], Step [300/500] Loss: 1.8214
Epoch [123/200], Step [400/500] Loss: 1.7606
Epoch [123/200], Step [500/500] Loss: 1.4932
Accuracy of the model on the test images: 75.46 %
use 0.0min20.581864833831787s
Epoch [124/200], Step [100/500] Loss: 1.3017
Epoch [124/200], Step [200/500] Loss: 1.5079
Epoch [124/200], Step [300/500] Loss: 1.9221
Epoch [124/200], Step [400/500] Loss: 1.9697
Epoch [124/200], Step [500/500] Loss: 0.9600
Accuracy of the model on the test images: 75.57 %
use 0.0min20.589545965194702s
Epoch [125/200], Step [100/500] Loss: 1.4066
Epoch [125/200], Step [200/500] Loss: 1.0608
Epoch [125/200], Step [300/500] Loss: 2.1675
Epoch [125/200], Step [400/500] Loss: 0.1017
Epoch [125/200], Step [500/500] Loss: 0.1973
Accuracy of the model on the test images: 75.44 %
use 0.0min20.59250807762146s
Epoch [126/200], Step [100/500] Loss: 1.9236
Epoch [126/200], Step [200/500] Loss: 0.7173
Epoch [126/200], Step [300/500] Loss: 1.6922
Epoch [126/200], Step [400/500] Loss: 0.2032
Epoch [126/200], Step [500/500] Loss: 1.0125
Accuracy of the model on the test images: 75.76 %
use 0.0min20.574411630630493s
Epoch [127/200], Step [100/500] Loss: 1.0648
Epoch [127/200], Step [200/500] Loss: 1.8413
Epoch [127/200], Step [300/500] Loss: 0.8166
Epoch [127/200], Step [400/500] Loss: 0.7186
Epoch [127/200], Step [500/500] Loss: 1.9249
Accuracy of the model on the test images: 75.74 %
use 0.0min20.576762437820435s
Epoch [128/200], Step [100/500] Loss: 1.3528
Epoch [128/200], Step [200/500] Loss: 1.8137
Epoch [128/200], Step [300/500] Loss: 1.3763
Epoch [128/200], Step [400/500] Loss: 1.3240
Epoch [128/200], Step [500/500] Loss: 1.9442
Accuracy of the model on the test images: 75.21 %
use 0.0min20.594711542129517s
Epoch [129/200], Step [100/500] Loss: 1.6730
Epoch [129/200], Step [200/500] Loss: 1.4576
Epoch [129/200], Step [300/500] Loss: 1.2523
Epoch [129/200], Step [400/500] Loss: 1.5209
Epoch [129/200], Step [500/500] Loss: 1.1535
Accuracy of the model on the test images: 75.46 %
use 0.0min20.58636236190796s
Epoch [130/200], Step [100/500] Loss: 1.6338
Epoch [130/200], Step [200/500] Loss: 1.7922
Epoch [130/200], Step [300/500] Loss: 0.5676
Epoch [130/200], Step [400/500] Loss: 1.8949
Epoch [130/200], Step [500/500] Loss: 1.9921
Accuracy of the model on the test images: 75.47 %
use 0.0min20.57331395149231s
Epoch [131/200], Step [100/500] Loss: 0.8292
Epoch [131/200], Step [200/500] Loss: 1.6283
Epoch [131/200], Step [300/500] Loss: 1.0917
Epoch [131/200], Step [400/500] Loss: 1.5508
Epoch [131/200], Step [500/500] Loss: 1.6635
Accuracy of the model on the test images: 75.76 %
use 0.0min20.58394694328308s
Epoch [132/200], Step [100/500] Loss: 0.7177
Epoch [132/200], Step [200/500] Loss: 0.8821
Epoch [132/200], Step [300/500] Loss: 1.2840
Epoch [132/200], Step [400/500] Loss: 1.4966
Epoch [132/200], Step [500/500] Loss: 1.8299
Accuracy of the model on the test images: 75.83 %
use 0.0min20.57688283920288s
Epoch [133/200], Step [100/500] Loss: 1.1117
Epoch [133/200], Step [200/500] Loss: 2.0203
Epoch [133/200], Step [300/500] Loss: 0.2079
Epoch [133/200], Step [400/500] Loss: 1.6799
Epoch [133/200], Step [500/500] Loss: 1.2938
Accuracy of the model on the test images: 75.85 %
use 0.0min20.588330030441284s
Epoch [134/200], Step [100/500] Loss: 1.1838
Epoch [134/200], Step [200/500] Loss: 0.1680
Epoch [134/200], Step [300/500] Loss: 0.6034
Epoch [134/200], Step [400/500] Loss: 1.9377
Epoch [134/200], Step [500/500] Loss: 1.4440
Accuracy of the model on the test images: 75.29 %
use 0.0min20.579824924468994s
Epoch [135/200], Step [100/500] Loss: 1.5189
Epoch [135/200], Step [200/500] Loss: 1.7238
Epoch [135/200], Step [300/500] Loss: 1.8031
Epoch [135/200], Step [400/500] Loss: 1.5680
Epoch [135/200], Step [500/500] Loss: 1.8765
Accuracy of the model on the test images: 75.5 %
use 0.0min20.576337575912476s
Epoch [136/200], Step [100/500] Loss: 1.7640
Epoch [136/200], Step [200/500] Loss: 1.2187
Epoch [136/200], Step [300/500] Loss: 1.6071
Epoch [136/200], Step [400/500] Loss: 1.2763
Epoch [136/200], Step [500/500] Loss: 1.5862
Accuracy of the model on the test images: 75.66 %
use 0.0min20.593910694122314s
Epoch [137/200], Step [100/500] Loss: 1.7075
Epoch [137/200], Step [200/500] Loss: 1.5340
Epoch [137/200], Step [300/500] Loss: 1.4863
Epoch [137/200], Step [400/500] Loss: 1.4170
Epoch [137/200], Step [500/500] Loss: 1.6421
Accuracy of the model on the test images: 75.53 %
use 0.0min20.554625511169434s
Epoch [138/200], Step [100/500] Loss: 1.7390
Epoch [138/200], Step [200/500] Loss: 1.6388
Epoch [138/200], Step [300/500] Loss: 1.3028
Epoch [138/200], Step [400/500] Loss: 1.8569
Epoch [138/200], Step [500/500] Loss: 1.3246
Accuracy of the model on the test images: 75.65 %
use 0.0min20.579295873641968s
Epoch [139/200], Step [100/500] Loss: 0.3075
Epoch [139/200], Step [200/500] Loss: 1.7466
Epoch [139/200], Step [300/500] Loss: 1.3005
Epoch [139/200], Step [400/500] Loss: 0.3846
Epoch [139/200], Step [500/500] Loss: 0.2858
Accuracy of the model on the test images: 75.85 %
use 0.0min20.722463130950928s
Epoch [140/200], Step [100/500] Loss: 0.9956
Epoch [140/200], Step [200/500] Loss: 1.6868
Epoch [140/200], Step [300/500] Loss: 1.2558
Epoch [140/200], Step [400/500] Loss: 1.0439
Epoch [140/200], Step [500/500] Loss: 1.5723
Accuracy of the model on the test images: 75.58 %
use 0.0min20.580142498016357s
Epoch [141/200], Step [100/500] Loss: 2.2597
Epoch [141/200], Step [200/500] Loss: 1.6770
Epoch [141/200], Step [300/500] Loss: 0.8316
Epoch [141/200], Step [400/500] Loss: 1.7355
Epoch [141/200], Step [500/500] Loss: 1.8693
Accuracy of the model on the test images: 75.45 %
use 0.0min20.55280113220215s
Epoch [142/200], Step [100/500] Loss: 1.5666
Epoch [142/200], Step [200/500] Loss: 0.6596
Epoch [142/200], Step [300/500] Loss: 1.6928
Epoch [142/200], Step [400/500] Loss: 1.9183
Epoch [142/200], Step [500/500] Loss: 1.3316
Accuracy of the model on the test images: 75.76 %
use 0.0min20.5780246257782s
Epoch [143/200], Step [100/500] Loss: 1.6893
Epoch [143/200], Step [200/500] Loss: 1.5397
Epoch [143/200], Step [300/500] Loss: 1.6977
Epoch [143/200], Step [400/500] Loss: 1.1024
Epoch [143/200], Step [500/500] Loss: 1.0337
Accuracy of the model on the test images: 75.57 %
use 0.0min20.599243879318237s
Epoch [144/200], Step [100/500] Loss: 0.5643
Epoch [144/200], Step [200/500] Loss: 1.4360
Epoch [144/200], Step [300/500] Loss: 0.7223
Epoch [144/200], Step [400/500] Loss: 0.9717
Epoch [144/200], Step [500/500] Loss: 1.2771
Accuracy of the model on the test images: 75.52 %
use 0.0min20.55806040763855s
Epoch [145/200], Step [100/500] Loss: 1.7184
Epoch [145/200], Step [200/500] Loss: 1.7416
Epoch [145/200], Step [300/500] Loss: 0.9393
Epoch [145/200], Step [400/500] Loss: 1.6941
Epoch [145/200], Step [500/500] Loss: 2.0614
Accuracy of the model on the test images: 75.65 %
use 0.0min20.56918478012085s
Epoch [146/200], Step [100/500] Loss: 1.2707
Epoch [146/200], Step [200/500] Loss: 0.7448
Epoch [146/200], Step [300/500] Loss: 0.9327
Epoch [146/200], Step [400/500] Loss: 1.6580
Epoch [146/200], Step [500/500] Loss: 1.7474
Accuracy of the model on the test images: 75.62 %
use 0.0min20.577457189559937s
Epoch [147/200], Step [100/500] Loss: 0.3349
Epoch [147/200], Step [200/500] Loss: 1.1530
Epoch [147/200], Step [300/500] Loss: 1.7887
Epoch [147/200], Step [400/500] Loss: 1.8637
Epoch [147/200], Step [500/500] Loss: 1.5539
Accuracy of the model on the test images: 75.62 %
use 0.0min20.56734824180603s
Epoch [148/200], Step [100/500] Loss: 1.8549
Epoch [148/200], Step [200/500] Loss: 0.1096
Epoch [148/200], Step [300/500] Loss: 1.6673
Epoch [148/200], Step [400/500] Loss: 1.3853
Epoch [148/200], Step [500/500] Loss: 1.4980
Accuracy of the model on the test images: 75.67 %
use 0.0min20.595983028411865s
Epoch [149/200], Step [100/500] Loss: 0.3207
Epoch [149/200], Step [200/500] Loss: 1.5532
Epoch [149/200], Step [300/500] Loss: 1.4864
Epoch [149/200], Step [400/500] Loss: 1.1584
Epoch [149/200], Step [500/500] Loss: 0.1673
Accuracy of the model on the test images: 75.39 %
use 0.0min20.56972908973694s
Epoch [150/200], Step [100/500] Loss: 1.6175
Epoch [150/200], Step [200/500] Loss: 1.6672
Epoch [150/200], Step [300/500] Loss: 0.2774
Epoch [150/200], Step [400/500] Loss: 0.4501
Epoch [150/200], Step [500/500] Loss: 0.9520
Accuracy of the model on the test images: 75.64 %
use 0.0min20.585551261901855s
Epoch [151/200], Step [100/500] Loss: 1.8260
Epoch [151/200], Step [200/500] Loss: 1.3618
Epoch [151/200], Step [300/500] Loss: 1.5497
Epoch [151/200], Step [400/500] Loss: 1.0226
Epoch [151/200], Step [500/500] Loss: 1.5750
Accuracy of the model on the test images: 75.4 %
use 0.0min20.573359966278076s
Epoch [152/200], Step [100/500] Loss: 1.7537
Epoch [152/200], Step [200/500] Loss: 0.3935
Epoch [152/200], Step [300/500] Loss: 1.3617
Epoch [152/200], Step [400/500] Loss: 0.9150
Epoch [152/200], Step [500/500] Loss: 1.1744
Accuracy of the model on the test images: 75.67 %
use 0.0min20.55489730834961s
Epoch [153/200], Step [100/500] Loss: 1.6436
Epoch [153/200], Step [200/500] Loss: 1.9014
Epoch [153/200], Step [300/500] Loss: 1.7428
Epoch [153/200], Step [400/500] Loss: 1.1601
Epoch [153/200], Step [500/500] Loss: 0.8929
Accuracy of the model on the test images: 75.88 %
use 0.0min20.567218542099s
Epoch [154/200], Step [100/500] Loss: 0.5618
Epoch [154/200], Step [200/500] Loss: 1.4692
Epoch [154/200], Step [300/500] Loss: 1.1863
Epoch [154/200], Step [400/500] Loss: 1.2290
Epoch [154/200], Step [500/500] Loss: 0.1978
Accuracy of the model on the test images: 76.0 %